For an efficient simulation of droplets in their most common spherical shape a spherical-symmetric 1D DSMC-based Vlasov-Enskog solver has been implemented in the PIC-DSMC framework PICLas. So far, primarily planar 1D simulations have been performed and discussed in literature, neglecting the surface curvature and the resulting increased pressure inside the droplet. This has a significant impact on the droplets, especially for sizes in the 10-nanometer range, as this work shows from the results of the evaporation coefficients.

1.
D.
Enskog
, Kinetische Theorie der Wärmeleitung, Reibung und Selbstdiffusion in gewissen verdichteten Gasen und Flüssigkeiten,
Kungl. Svenska vetenskapsakademiens handlingar
(
Almqvist & Wiksells boktryckeri-a.-b
.,
1922
).
2.
L.
Gibelli
,
A.
Frezzotti
, and
P.
Barbante
,
Kinet. Rel. Models
8
,
235
254
(
2015
).
3.
S.
Busuioc
,
A.
Frezzotti
, and
L.
Gibelli
,
J. Comput. Phys.
475
,
111873
(
2023
).
4.
S.
Fasoulas
,
C.-D.
Munz
,
M.
Pfeiffer
,
J.
Beyer
,
T.
Binder
,
S.
Copplestone
,
A.
Mirza
,
P.
Nizenkov
,
P.
Ortwein
, and
W.
Reschke
,
Phys. Fluids
31
,
072006
(
2019
).
5.
A.
Frezzotti
and
P.
Barbante
,
Mech. Eng. Rev.
4
,
16
00540
(
2017
).
6.
H. V.
Beijeren
and
M.
Ernst
,
Physica
68
,
437
456
(
1973
).
7.
J. M.
Montanero
and
A.
Santos
,
Phys. Rev. E
54
,
438
444
(
1996
).
8.
J. M.
Montanero
and
A.
Santos
,
Phys. Fluids
9
,
2057
2060
(
1997
).
9.
A.
Frezzotti
and
C.
Sgarra
,
J. Stat. Phys.
73
,
193
207
(
1993
).
10.
A.
Frezzotti
,
Phys. Fluids
9
,
1329
1335
(
1997
).
11.
A.
Frezzotti
,
Eur. J. Mech. B. Fluids
18
,
103
119
(
1999
).
12.
R.
Meland
,
A.
Frezzotti
,
T.
Ytrehus
, and
B.
Hafskjold
,
Phys. Fluids
16
,
223
243
(
2004
).
13.
A.
Frezzotti
,
L.
Gibelli
, and
S.
Lorenzani
,
Phys. Fluids
17
,
012102
(
2005
).
14.
S.
Busuioc
,
L.
Gibelli
,
D. A.
Lockerby
, and
J. E.
Sprittles
,
Phys. Rev. Fluids
5
,
103401
(
2020
).
15.
A.
Frezzotti
, “
Non-Equilibrium Structure of the Vapor-Liquid Interface of a Binary Fluid
,” (
AIP
,
2011
).
16.
A.
Frezzotti
,
L.
Gibelli
,
D. A.
Lockerby
, and
J. E.
Sprittles
,
Phys. Rev. Fluids
3
,
054001
(
2018
).
17.
S.
Busuioc
and
L.
Gibelli
,
Phys. Fluids
32
,
093314
(
2020
).
18.
K.
Kobayashi
,
K.
Ohashi
, and
M.
Watanabe
, “
Numerical Analysis of Vapor-Liquid Two-Phase System Based on the Enskog-Vlasov Equation
,” (
AIP
,
2012
).
19.
A.
Frezzotti
and
M.
Rossi
, “
Slip Effects at the Vapor-Liquid Boundary
,” (
AIP
,
2012
).
20.
E. S.
Benilov
and
M. S.
Benilov
,
Phys. Rev. E
99
,
012144
(
2019
).
21.
M.
Sadr
and
M. H.
Gorji
,
J. Comput. Phys.
378
,
129
142
(
2019
).
22.
M.
Sadr
,
M.
Pfeiffer
, and
M. H.
Gorji
,
J. Fluid Mech.
920
(
2021
), .
23.
E. S.
Benilov
and
M. S.
Benilov
,
Phys. Rev. E
97
,
062115
(
2018
).
24.
E. S.
Benilov
and
M. S.
Benilov
,
J. Stat. Mech: Theory Exp.
2019
,
103205
(
2019
).
25.
G. A.
Bird
,
Molecular Gas Dynamics and the Direct Simulation of Gas Flows
, 2nd ed. (
Oxford Engineering Science
,
1994
).
26.
D.
Baganoff
and
J. D.
McDonald
,
Phys. Fluids A
2
,
1248
1259
(
1990
).
27.
P. M.
Résibois
,
M.
De Leener
, and
M.
De Leener
,
Classical Kinetic Theory of Fluids
(
John Wiley & Sons
,
1977
).
28.
N. F.
Carnahan
and
K. E.
Starling
,
J. Chem. Phys.
51
,
635
636
(
1969
).
29.
M. N.
Bannerman
,
L.
Lue
, and
L. V.
Woodcock
,
J. Chem. Phys.
132
,
084507
(
2010
).
30.
H.
Ibach
,
Physics of Surfaces and Interfaces
(
Springer-Verlag GmbH
,
2006
).
31.
D. S.
Liechty
and
T.
Abe
, “Modifications to Axially Symmetric Simulations Using New DSMC (
2007
) Algorithms,” in
AIP Conference Proceedings
(
AIP
, 2008).
32.
D.
Jakubczyk
,
M.
Kolwas
,
G.
Derkachov
,
K.
Kolwas
, and
M.
Zientara
,
Acta Phys. Pol. A
122
,
709
716
(
2012
).
33.
R.
Littlewood
and
E.
Rideal
,
Trans. Faraday Soc.
52
,
1598
(
1956
).
This content is only available via PDF.
You do not currently have access to this content.