Currently accepted turbulence theory assumes that the flow is continuum at all length scales, including the smallest length scale of turbulence, known as the Kolmogorov scale. Kolmogorov in his celebrated 1941 theory [A. N. Kolmogorov, C. R. Acad. Sci. URSS 30, 301-305 (1941)] asserted that the fine-scale turbulent structures in the energy cascade are universal. According to Kolmogorov’s theory, the energy dissipation rate and kinematic viscosity alone describe this universal behavior in terms of the Kolmogorov length, time, and velocity scales. However, it has been suggested [R. Betchov, J. Fluid Mech. 3, 205-216 (1957); D. Bandak, N. Goldenfeld, A. A. Mailybaev, and G. Eyink, Phys. Rev. E 105, 065113 (2022)] that thermal fluctuations, absent from the continuum description of gases, can terminate the energy cascade at a length scale larger than mean-free-path considerations alone would suggest. Additionally, for high-Mach-number turbulent flows, the Kolmogorov length scale can be comparable to the gas-molecule mean free path, which could induce noncontinuum molecular-level effects in the turbulent energy cascade. To investigate these two issues, compressible Taylor-Green vortex flow is simulated using the direct simulation Monte Carlo (DSMC) method and direct numerical simulations (DNS) of the Navier-Stokes equations. It is found that the molecular-gas-dynamics spectra grow quadratically with wavenumber in the dissipation range due to thermal fluctuations instead of decreasing exponentially as the continuum description predicts. Macroscopically, thermal fluctuations appear to break the flow symmetries and thereby produce different but statistically similar routes from the initial non-turbulent flow to the long-time turbulent flow.

1.
A. N.
Kolmogorov
,
C. R. Acad. Sci. URSS
30
,
301
305
(
1941
).
2.
S.
Corrsin
,
J. Geophys. Res.
64
,
2134
(
1959
).
3.
R. D.
Moser
,
Phys. Fluids
18
,
078105
(
2006
).
4.
S.
Stefanov
,
I. D.
Boyd
, and
C.-P.
Cai
,
Phys. Fluids
12
(
5
),
1226
1239
(
2000
).
5.
R.
Betchov
,
J. Fluid Mech.
3
,
205
216
(
1957
).
6.
D.
Bandak
,
N.
Goldenfeld
,
A. A.
Mailybaev
, and
G.
Eyink
,
Phys. Rev. E
105
,
065113
(
2022
).
7.
R. M.
McMullen
,
M. C.
Krygier
,
J. R.
Torczynski
, and
M. A.
Gallis
,
Phys. Rev. Lett.
128
,
114501
(
2022
).
8.
J. B.
Bell
,
A.
Nonaka
,
A. L.
Garcia
, and
G.
Eyink
,
J. Fluid Mech.
929
,
A12
(
2022
).
9.
P. S.
Bernard
,
Turbulent Fluid Flow
(
John Wiley and Sons, Inc
.,
Hoboken, NJ
,
2019
).
10.
G. A.
Bird
,
Molecular Gas Dynamics and the Direct Simulation of Gas Flows
(
Clarendon Press
,
Oxford
,
1998
).
11.
M.
Howard
,
A. M.
Bradley
,
S. W.
Bova
,
J. R.
Overfelt
,
R. M.
Wagnild
,
D. J.
Dinzl
,
M. F.
Hoemmen
, and
A.
Klinvex
,
AIAA-2017-4407
,
American Institute of Aeronautics and Astronautics
,
Reston, VA
(
2017
).
12.
S. J.
Plimpton
and
M. A.
Gallis
, “
SPARTA Direct Simulation Monte Carlo (DSMC) Simulator
,” https://sparta.github.io/ (
2022
).
13.
M. A.
Gallis
,
T. P.
Koehler
,
J. R.
Torczynski
, and
S. J.
Plimpton
,
Phys. Fluids
27
,
084105
(
2015
).
14.
M. A.
Gallis
,
T. P.
Koehler
,
J. R.
Torczynski
, and
S. J.
Plimpton
,
Phys. Rev. Fluids
1
,
043403
(
2016
).
15.
M. A.
Gallis
,
N. P.
Bitter
,
T. P.
Koehler
,
J. R.
Torczynski
,
S. J.
Plimpton
, and
G.
Papadakis
,
Phys. Rev. Lett.
118
,
064501
(
2017
).
16.
M. A.
Gallis
,
J. R.
Torczynski
,
N. P.
Bitter
,
T. P.
Koehler
,
S. J.
Plimpton
, and
G.
Papadakis
,
Phys. Rev. Fluids
3
,
071402(R
) (
2018
).
17.
S. J.
Plimpton
,
S. G.
Moore
,
A.
Borner
,
A. K.
Stagg
,
T. P.
Koehler
,
J. R.
Torczynski
, and
M. A.
Gallis
,
Phys. Fluids
31
(
8
),
086101
(
2019
).
18.
M. A.
Gallis
,
J. R.
Torczynski
,
M. C.
Krygier
,
N. P.
Bitter
, and
S. J.
Plimpton
,
Phys. Rev. Fluids
6
,
013401
(
2021
).
19.
M. A.
Gallis
and
J. R.
Torczynski
,
Phys. Rev. Fluids
6
,
063402
(
2021
).
20.
G. I.
Taylor
and
A. E.
Green
,
Proc. Royal Soc. Lon.
158
(
895
),
499
(
1937
).
21.
M. E.
Brachet
,
D. I.
Meiron
,
S. A.
Orszag
,
B. G.
Nickel
,
R. H.
Morf
, and
U.
Frisch
,
J. Fluid Mech.
130
,
411
(
1983
).
22.
R. W.
MacCormack
and
G. V.
Candler
,
Comput. Fluids
17
(
1
),
135
150
(
1989
).
23.
P. K.
Subbareddy
and
G. V.
Candler
,
J. Comput. Phys.
228
(
5
),
1347
1364
(
2009
).
24.
A.
Garcia
, Hydrodynamic Fluctuations and the direct simulation Monte Carlo method,’’ in
Microscopic Simulation of Complex Flows
(
Plenum
,
New York
,
1990
).
25.
U.
Frisch
,
Turbulence: the legacy of A. N. Kolmogorov
(
Cambridge University Press
,
Cambridge
,
1995
).
26.
J.
Schumacher
,
K. R.
Sreenivasan
, and
V.
Yakhot
,
New J. Phys.
9
,
89
(
2007
).
28.
G.
Boffetta
and
S.
Musacchio
,
Phys. Rev. Lett.
119
,
054102
(
2017
).
29.
A.
Berera
and
R. D. J. G.
Ho
,
Phys. Rev. Lett.
120
,
024101
(
2018
).
30.
N. B.
Budanur
and
H.
Kantz
, arXiv2209.01064.
31.
Y. C
Li
,
R. D. J. G.
Ho
,
A.
Berera
, and
Z. C.
Feng
,
J. Fluid Mech
904
,
A27
(
2020
).
33.
A.
Kupainen
,
Ann. Henri Poincaré
4
,
S713
S726
(
2003
).
34.
G. L.
Eyink
and
D.
Bandak
,
Phys. Rev. Research
2
,
043161
(
2020
).
35.
S.
Thalabard
,
J.
Bec
, and
A. A.
Mailybaev
,
Commun. Phys.
3
,
122
(
2020
).
36.
S.
Qin
and
S.
Liao
,
J. Fluid Mech.
948
,
A7
(
2022
).
37.
A.
Fedorov
and
A.
Tumin
,
AIAA J.
55
(
7
),
2335
(
2017
).
38.
This content is only available via PDF.
You do not currently have access to this content.