Vibrational nonequilibrium of diatomic molecules resulting in non-Boltzmann distributions is a phenomenon commonly encountered in rapid hypersonic nozzle expansions. The usual assumption of different vibrational temperatures for different species cannot simulate such nonequilibrium behaviour. State-to-state models governed by a master equation describe the evolution of population number for all vibrational levels. These equations possess singularly perturbed characteristics and stable numerical integration must account for this stiffness. Linearly implicit, or Rosenbrock–Wanner (ROW), integration methods are inherently more stable than explicit methods and less computationally complex than implicit ones of equivalent order. One historical limitation of ROW methods is the requirement that the exact Jacobian of the evolution rate vector must be computed to achieve classical order of convergence. This may be analytically intractable for large systems. Automatic Differentiation (AD) provides a solution by algorithmically determining the exact derivatives, to working precision, based upon implementations of the rate vector. State-to-state simulations of carbon monoxide vibrational kinetics under the influence of sudden a reduction in transitional/rotational temperature using linearly implicit time integration with AD is presented. Computational performance of the ROW method is compared to second-order backward-difference integration.

1.
K. N. C.
Bray
, “Chemical and vibrational nonequilibrium in nozzle flows,” in
Nonequilibrium Flows : Part II
, edited by
P. P.
Wegener
(
Marcel Dekker
,
New York
,
1970
) pp.
59
157
.
2.
J. D.
Anderson
,
Hypersonic and High-Temperature Gas Dynamics
, 2nd ed. (
AIAA
,
Reston, VA
,
2006
).
3.
A. C. de Gavelle
de Roany
,
C.
Flament
,
J. W.
Rich
,
V. V.
Subramaniam
, and W. R. W. Jr., (
1993
).
4.
H. H.
Rosenbrock
, (
1963
).
5.
P.
Kaps
and
G.
Wanner
, (
1981
).
6.
A.
Sandu
,
J. G.
Verwer
,
J. G.
Blom
,
E. J.
Spee
,
G. R.
Carmichael
, and
F. A.
Potra
, (
1997
).
7.
H.
Wu
,
P. C.
Ma
, and
M.
Ihme
,.
8.
J.
Bradbury
,
R.
Frostig
,
P.
Hawkins
,
M. J.
Johnson
,
C.
Leary
,
D.
Maclaurin
,
G.
Necula
,
A.
Paszke
,
J.
VanderPlas
,
S.
Wanderman-Milne
, and
Q.
Zhang
, “
JAX: Composable transformations of Python+NumPy programs
,” (
2018
).
9.
K. P.
Huber
and
G.
Herzberg
,
Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules
(
Springer US : Imprint: Springer
,
Boston, MA
,
1979
).
10.
R. N.
Schwartz
and
K. F.
Herzfeld
, (
1954
).
11.
G. D.
Billing
and
E. R.
Fisher
, (
1979
).
12.
P.
Valentini
,
T. E.
Schwartzentruber
,
J. D.
Bender
,
I.
Nompelis
, and
G. V.
Candler
, (
2015
).
13.
K. N. C.
Bray
, (
1968
).
14.
J.
Keck
and
G.
Carrier
, (
1965
).
15.
W. Q.
Jeffers
and
J. D.
Kelley
,.
16.
R. L.
DeLeon
and
J.
Rich
, (
1986
).
17.
C.
Flament
,
T.
George
,
K.
Meister
,
J.
Tufts
,
J.
Rich
,
V.
Subramaniam
,
J.-P.
Martin
,
B.
Piar
, and
M.-Y.
Perrin
, (
1992
).
18.
A. C.
Hindmarsh
,
P. N.
Brown
,
K. E.
Grant
,
S. L.
Lee
,
R.
Serban
,
D. E.
Shumaker
, and
C. S.
Woodward
, (
2005
).
19.
E.
Hairer
and
G.
Wanner
, Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, 2nd ed.,
Computational Mathematics
, Vol.
14
(
Springer
,
Berlin
,
1996
).
20.
T.
Steihaug
and
A.
Wolfbrandt
, (
1979
).
21.
A.
Prothero
and
A.
Robinson
, (
1974
).
22.
J.
Rang
, (
2015
).
23.
J.
Rang
, (
2016
).
24.
K.
Gustafsson
,
M.
Lundh
, and
G.
Söderlind
, (
1988
).
25.
K.
Gustafsson
, (
1994
).
26.
S.
Lee
,
I.
Kim
,
G.
Park
,
J. K.
Lee
, and
J. G.
Kim
, (
2020
).
This content is only available via PDF.
You do not currently have access to this content.