Space debris occupying low Earth orbits poses critical threats for future missions, and the popularity of small satellite constellations of CubeSats is likely to significantly augment traffic in such valuable orbits. A CubeSat without any deorbiting mechanism could remain in these orbits for hundreds of years. The aerodynamic deorbit experiment (ADE) CubeSat, developed by researchers at Purdue University, relies on a dragsail to provide accelerated passive deorbiting of a CubeSat post-mission. A good estimation of the aerothermal load on a reentry CubeSat is paramount to ensure a predictable reentry. This study investigates the reentry aerothermodynamics of the ADE CubeSat using the direct simulation Monte Carlo (DSMC) and Navier-Stokes-Fourier (NSF) continuum based methods. The aerothermal load on the CubeSat was determined at various altitudes in the reentry trajectory. The DSMC methods were employed for higher altitude cases and the continuum based methods were utilized for lower altitude cases while resolving the aeroload during CubeSat reentry. The continuum methods offered considerable computational cost savings compared to the DSMC methods— in predicting the aerothermal load on an ADE CubeSat— at lower altitudes, H ≤ 90 km, along the reentry trajectory. The aerothermal analysis suggests that the CubeSat and dragsail encounter considerable aero-heating during the reentry that will likely affect the survivability of the dragsail and increase uncertainty in the reentry corridor.

1.
ESA Space Debris Office
, “ESA’s Annual Space Environment Report,”
Tech. Rep. GEN-DB-LOG-00288-OPS-SD
(
The European Space Agency
,
2022
).
2.
NASA Office of Safety and Mission Assurance
, “NASA Technical Standard: Process for Limiting Orbital Debris,”
Tech. Rep. NASA-STD-8719.14B
(
NASA
,
2019
).
3.
P. C. E.
Roberts
and
P. G.
Harkness
,
J. Spacecr. Rocket.
44
,
1195
1203
(
2007
).
4.
D.
Guglielmo
,
S.
Omar
,
R.
Bevilacqua
,
L.
Fineberg
,
J.
Treptow
,
B.
Poffenberger
, and
Y.
Johnson
,
J. Spacecr. Rocket.
56
,
129
145
(
2019
).
5.
G. N.
Markelov
,
A. V.
Kashkovsky
, and
M. S.
Ivanov
,
J. Spacecr. Rocket.
38
,
43
50
(
2001
).
6.
A.
Marín
C.,
I. B.
Sebastião
,
S.
Tamrazian
,
D.
Spencer
, and
A.
Alexeenko
, “
DSMC-SPARTA aerodynamic characterization of a deorbiting CubeSat
,” in
AIP Conference Proceedings
, Vol.
2132
(
2019
) p.
070024
.
7.
C.
Hsieh
,
C.
Pan
, and
M.
Lo
,
Int. J. Comp. Fluid Dyn.
,
1
24
(
2021
).
8.
A. J.
Lofthouse
,
L. C.
Scalabrin
, and
I. D.
Boyd
,
J. Therm. Heat Trans.
22
,
38
49
(
2008
).
9.
P. M.
Bhide
,
I.
Nompelis
,
T.
Schwartzentruber
, and
G.
Candler
,
AIAA Journal
59
,
3815
3830
(
2021
).
10.
A. C.
Long
and
D. A.
Spencer
, “Stability for a Deployable Drag Device for Small Satellite Deorbit,” in
AIAA/AAS Astrodynamics Specialist Conference
(
American Institute of Aeronautics and Astronautics, Long Beach
,
California
,
2016
) pp.
1
16
.
11.
A. C.
Long
and
D. A.
Spencer
, “
A passively stable pyramid sail for the deorbit of small satellite constellations
,” in
68th International Astronautical Congress (IAC)
, IAC-17-A6.5.2 (
Adelaide, Australia
,
2017
).
12.
A.
Black
and
D. A.
Spencer
,
J. Space Saf. Eng.
7
,
397
403
(
2020
).
13.
A.
Black
and
J.
Mansell
,
personal communication
(
2022
).
14.
M. A.
Gallis
,
J. R.
Torczynski
,
S. J.
Plimpton
,
D. J.
Rader
, and
T.
Koehler
, “
Direct simulation Monte Carlo: The quest for speed
,” (
AIP Conference Proceedings
1628
,
2014
) pp.
27
36
.
15.
G. A.
Bird
,
Molecular Gas Dynamics And The Direct Simulation Of Gas Flows
(
Clarendon Press
,
Oxford
,
1994
).
16.
N.
Adhikari
and
A.
Alexeenko
,
J. Therm. Heat Trans.
36
,
118
128
(
2022
).
17.
N.
Adhikari
and
A.
Alexeenko
, “
Modeling Nonequilibrium Aerothermochemistry in a General Purpose CFD Solver
,” in
23rd AIAA International Space Planes and Hypersonic Systems and Technologies Conference
, AIAA 2020-2408 (
American Institute of Aeronautics and Astronautics
,
Montreal, Canada
,
2020
) pp.
1
12
.
18.
N.
Adhikari
and
A. A.
Alexeenko
,
Phys. Fluid.
33
,
056109
(
2021
).
19.
N.
Adhikari
,
Investigation of Aerothermodynamic and Chemical Kinetic Models for High-Speed Nonequilibrium Flows
, Ph.D. thesis,
Purdue University Graduate School
(
2021
).
20.
J. C.
Maxwell
,
Philosophical Transactions of the Royal Society of London
170
,
231
256
(
1879
).
21.
M.
von Smoluchowski
,
Annalender Physik und Chemie
300
,
101
130
(
1898
).
22.
T.
Gokcen
,
Computation of Hypersonic Low Density Flows with Thermochemical Nonequilibrium
, Ph.D. thesis,
Stanford University
(
1989
).
23.
R. N.
Gupta
,
J. M.
Yos
,
R. A.
Thompson
, and
K. P.
Lee
, “A Review of Reaction Rates and Thermodynamic and Transport Properties for an 11-Species Air Model for Chemical and Thermal Nonequilibrium Calculations to 30000 K,”
Tech. Rep
. (
NASA
,
1990
).
24.
C.
Park
,
Nonequilibrium Hypersonic Aerothermodynamics
(
John Wiley & Sons, New York
,
USA
,
1990
).
25.
I. D.
Boyd
,
G.
Chen
, and
G. V.
Candler
,
Phys. Fluid.
7
,
210
219
(
1995
).
26.
T.
Gokcen
and
R.
MacCormack
, “
Nonequilibrium effects for hypersonic transitional flows using continuum approach
,” in
27th Aerospace Sciences Meeting
(
American Institute of Aeronautics and Astronautics
,
Reno, Nevada
,
1989
).
27.
M.
Gallis
,
J.
Torczynski
,
D.
Rader
, and
G.
Bird
, “
Accuracy and convergence of a new dsmc algorithm
,” in
40th Thermophysics Conference
(
American Institute of Aeronautics and Astronautics
,
Seattle, Washington
,
2012
).
This content is only available via PDF.
You do not currently have access to this content.