Indonesia is the largest pineapple exporter in the world. Pineapple (Ananas comosus L. Merr) is a horticultural plant that is in demand by the public because it is rich in benefits at a low price. However, pineapple has characteristics that continue the function of metabolism. This metabolic process causes the pineapple fruit to ripen, age (senescence), and be damaged. Therefore, time is a very influential factor in the quality of pineapple. The accuracy and speed of sorting activities in postharvest are important things that must be considered. Good postharvest handling will reduce losses, both in quality and quantity. The longer the period between harvest and consumption, the greater the loss in quality. Identifying objects by relying on eye observation is still mostly done by farmers. Such a manual method may have shortcomings due to the limitations and weaknesses of the human sense of sight. In addition, the manual method takes a long time. So it is necessary to develop an intelligent system that can help speed up the sorting and grading process in postharvest activities. The identification and classification process uses digital images with color features (RGB and HSV), GLCM texture features, and shape features (area, major perimeter, and minor axis). While the machine learning methods used are SVM, KNN, and Neural Networks. The first thing to do is to collect the image of the pineapple, then preprocess it by cropping the unused part, then resizing and segmenting the image using the morphological method. After the 13-feature extraction process is complete, the next step is to identify the pineapple’s ripeness using the three methods. Based on the results of the study, it is known that the highest percentage of accuracy in the SVM method is 89%, the second neural network is 80%, and the last in the KNN method is 71%. By utilizing the image, it is expected to minimize the touch (friction) from the human hand, minimize the limitations (weaknesses) of the human sense of sight, and reduce the sorting time so that the quality of horticultural commodities will be maintained.

1.
E. P.
Astoko
,
Konsep Pengembangan Agribisnis Konsep Pengembangan Nanas (Ananas Comosus L. Merr.) Di Kabupaten Kediri Provinsi Jawa Timur
, (
HABITAT
,
2019
)
2.
Fahroji
,
Pascapanen Hortikultura
. (
Badan Penelitian dan Pengembangan Pertanian, Kementerian Pertanian
,
2011
)
3.
Badan Pusat Statistika (BPS)
, (https://sumut.bps.go.id/, 10 Maret
2022
)
4.
Fahroji
,
V.
Zulfia
, Syuruati and
S.
Swastika
,
Petunjuk Teknis Pascapanen Nanas
, (
Badan Penelitian dan Pengembangan Pertanian
,
Kementerian Pertanian
,
2021
)
5.
I.M.S.
Utama
,
Penaganan Pascapanen Buah dan Sayuran Segar
, (
Forum Konsultasi Teknologi, Dinas Pertanian Tanaman Pangan Provinsi Bali
,
2021
)
6.
IMS
Utama
,
Pascapanen Produk Segar Hortikultura
, (
Workshop of Postharvest Handling of Horticultural Crops conducted by Indonesia Cold Chain Project
,
2005
)
7.
Direktorat Penanganan Pasca Panen, Cara Penanganan pasca Panen Hortikultura yang Baik (Departemen Pertanian, 2007)
8.
R.A.R
Lubis
,
A.P.
Munir
, and
A.
Rohanah
,
Modifikasi Alat Pengupas Kulit dan Pemotong Buah Nanas Tipe Manual
, (
Jurnal Rekayasa Pangan dan Pertanian
,
2017
),
5
(
3
), pp
626
631
9.
B.A.
Harsojuwono
,
Pentingnya Penerapan Commodity System Assessment Method (CSAM) Pada Penanganan Dan Distribusi Produk Hortikultura
, (
Orasi Ilmiah Guru Besar. UNUD
,
Badung
,
2008
)
10.
M.Y.
Samad
,
Pengaruh Penanganan Pasca panen Terhadap Mutu Komoditas Hortikultura
, (
Jurnal Saiuns dan Teknologi
,
2006
),
8
(
1
)
11.
C.
Cai
,
J.
Tan
,
P.
Zhang
,
Y.
Ye
and
J.
Zhang
,
Determining Strawberries' Varying Maturity Levels by Utilizing Image Segmentation Methods of Improved DeepLabV3+
, (
Agronomy
2022
), pp
1
15
12.
W.
Winarno
,
H.Y.
Riskiawan
,
T.
Rizaldi
and
D. P. S.
Setyohadi
.
Identification Strawberry Maturity using Naïve-Bayes and Image Processing
, (
The First International Conference of Food and Agriculture
,
2018
), pp
394
400
13.
Y.
Li
,
X.
Feng
,
Y.
Liu
, and
X.
Han
,
Apple quality identification and classification by image processing based on convolutional neural networks
, (
Scientific reports, nature portfolio
,
2021
), pp
1
6
14.
NMD.
Janurianti
,
I.M.S.
Utama
and
I.B.W.
Gunam
,
Colour and Quality of Strawberry Fruit (Fragaria x ananassa Duch.) at Different Levels of Maturity
, (
SEAS (Sustainable Environment Agricultural Science)
,
2021
), pp
22
28
15.
A.
Taofik
,
N.
Ismail
,
Y.A.
Gerhana
,
K.
Komarujaman
, and
M.A.
Ramdhani
,
Design of Smart System to Detect Ripeness of Tomato and Chili with New Approach in Data Acquisition
, (
The 2nd Annual Applied Science and Engineering Conference (AASEC)
,
2017
).
16.
F.Y.
Manik
and
K.
Sahputra
,
Klasifikasi Belimbing Menggunakan Naïve Bayes Berdasarkan Fitur Warna RGB
. (
IJCCS
,
2017
)
11
(
1
)
17.
J.F.
Fauzi
,
H.
Tolle
, and
R.K.
Dewi
,
Implementasi Metode RGB To HSV pada Aplikasi Pengenalan Mata Uang Kertas Berbasis Android untuk Tuna Netra
, (
Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer 2018
,
2
(
6
)), pp
2319
2325
18.
R.
Andrian
,
D.
Maharani
,
M.A.
Muhammad
and
A.
Junaidi
,
Butterfly identification using gray level co- occurrence matrix (GLC M) extraction feature and k-nearest neighbor (knn) classification
. (
Register: Jurnal Ilmiah Teknologi Sistem Informasi (Scientific Journal of Information System Technology)
,
2019
,
6
(
1
)), pp
11
21
19.
R.R.
Waliyansyah
,
K.
Adi
and
J.E.
Suseno
,
Implementasi Metode Gray Level Co-occurrence Matrix dalam Identifikasi Jenis Daun Tengkawang
. (
JNTETI
,
2018
,
7
(
1
))
20.
K.
Sahputra
and
S.
Wahyuni
.
Identifikasi Jenis Tanaman Berdasarkan Ektraksi Fitur Morfologi Daun Menggunakan K-Nearest Neighbor
. (
Jurnal Teknik dan Informatika
,
2018
,
5
(
1
))
21.
M.
Meenu
,
C. Kurade. BC.
Neelapu
and
S.
Kalra
.
A concise review on food quality assessment using digital image processing (Trends in Food Science & Technology, 2021
)
22.
D.P.
Pamungkas
,
Ekstraksi Citra Menggunakan Metode GLCM Dan Knn Untuk Indentifikasi Jenisanggrek (Orchidaceae
), (
Innovation In Research Of Informatics
,
2019
,
1
(
2
)), pp
51
56
23.
F.Y.
Manik
,
Saputra
K.
and
D.S.
Ginting
,
Plant Classification Based on Extraction Feature Gray Level Co- Occurrence Matrix Using k-nearest Neighbor
. (
Journal of Physics: Conference Series.
1566
012107
,
2020
)
24.
A.D.
Baihaqie
, and
R.
Wulan
,
Algorithm Configuration K-Nearest To Clarification Medicine Tree Based On Extraction, Variation Of Color, Texture, And Shape Of Leaf
. (
Ilomata International Journal of Social Science (IJSS)
.
2021
,
2
(
1
)), pp
81
91
25.
N.
Syahidan
,
S.
Rati
,
S.
Lubis
and
N.
Fadillah
,
Klasifikasi Tanaman Aglaonema Dengan Fitur Ekstraksi Gray Level Co-Occurrence Matrix Dan K-Nearest Neighbor
, (
Jurnal Informatika Dan Teknik Komputer.
2020
,
1
(
2
))
26.
Z. E.
Fitri
,
A.
Baskara
,
M.
Silvia
,
A.
Madjid
and
A.M.N.
Imron
,
Application of backpropagation method for quality sorting classification system on white dragon fruit (Hylocereus undatus
), (
The 3rd International Conference On Food and Agriculture
,
2021
)
27.
Z.
Fan
,
J.
Xie
,
Z.
Wang
,
P.
Liu
,
S.
Qu
and
L.
Huo
,
Image Classification Method Based on Improved KNN Algorithm
, (
ICSTA
,
2021
)
28.
R.A.
Anggraini
,
F. F
Wati
,
M. J.
Shidiq
,
A.
Suryadi
, H. F and
D.N.
Kholifah
,
Identification Of Herbal Plant Based On Leaf Image Using GLCM Feature and K-Means
, (
Jurnal TECHNO Mandiri
,
2020
), pp
71
78
29.
Bisgin
H
et al
Comparing SVM and ANN-based Machine Learning Methods for Species Identification of Food Contaminating Beetles
.
Scientific Reports.
2018
.
30.
FY
Manik
,
Y.
Herdiyeni
and
E.N.
Heliyana
,
Leaf Morphological Feature Extraction Of Digital Image Anthocephalus Cadamba
. (
Telkomnika
,
2016
,
14
(
2
))
31.
V.
Balasubramaniam
,
Artificial Intelligence Algorithm with SVM Classification using Dermascopic Images for Melanoma Diagnosis
, (
Journal of Artificial Intelligence and Capsule Networks
2021
)
32.
Y.
Zhang
,
D
Xiao
, and
Y.
Liu
,
Automatic Identification Algorithm of the Rice Tiller Period Based on PCA and SVM
, (
Digital Object Identifier
,
2021
)
33.
R.R.
Waliyansyah
and
U.H.A.
Hasbullah
,
Comparison of Tree Method, Support Vector Machine, Naïve Bayes, and Logistic Regression on Coffee Bean Image
. (
EMITTER International Journal of Engineering Technology
,
2021
), pp
126
136
34.
Tang
Le T.
,
Deep learning for noninvasive classification of clustered horticultural crops – A case for banana fruit tiers
. (
Postharvest Biology and Technology
,
2019
)
35.
Yatno
,
B.
et al,
Klarifikasi Kematangan Buah Nenas Dengan Ruang Warna Hue Saturation Intensity
, (
Jurnal Inovtek Polbeng-Seri Informatika
,
2021
,
6
(
1
))
36.
Azhari
K.
and Supatman.
Klasifikasi Jenis-Jenis Buah Nanas Menggunakan Learning Vector Quantization (LVQ)
. (
Konstelasi
:
Konvergensi Teknologi dan Sistem Informasi
,
2021
)
37.
Prasetyo
N.A
, et al
Sistem Identifikasi Tingkat Kematangan Buah Nanas Secara Non-Destruktif Berbasis Computer Vision
. (
Journal Of Energy, Material, And Instrumentation Technology.
,
2021
,
2
(
1
))
38.
Using machine learning
,
W.N.
Syazwani
,
M.
Asraf
,
M.S.
Amin
and
N.
Dalila
,
Automated image identification, detection and fruit counting of top-view pineapple crowning
. (
Alexandria Engineering Journal
,
2022
) pp
1265
1276
39.
C.
Chang
,
C.
Kuan
,
H.
Tseng
,
P.
Lee
,
S.
Tsai
and
S.
Chen
,
Using deep learning to identify maturity and 3D distance in pineapple fields
(
Scientific Reports
,
2022
)
40.
M.M
Ali
,
N.
Hashim
,
S. A.
Aziz
and
O.
Lasekan
,
Characterisation of Pineapple Cultivars under Different Storage Conditions Using Infrared Thermal Imaging Coupled with Machine Learning Algorithms
, (
Agriculture
,
2022
)
This content is only available via PDF.
You do not currently have access to this content.