A broad increase in data consumption in society and industry trigger network operators looking to upgrade their metro networks with higher bandwidth requirements. Service providers and operators are challenged to find a simple, the most efficient and cost-effective way of meeting the demand with new speeds and standards on the horizon. Distributed Denial of Service (DDoS) attack is a cyber-attack that uses a technique to flood the server, the system, or network of the targeted attack with unwanted traffic. The occurrence of DDoS attack on the metro networks can make the operating system unable to operate properly and even crash. DDoS can be prevented by monitoring traffic regularly, increasing server resource capacity and implementing multiple protection strategies. This paper investigates DDoS attacks by utilizing Information Gain feature Selection method based on metro network expert’s opinion. The main aim is to improve the detection accuracy as such may help the metro network optimally provides the necessary bandwidth. Then, Naïve Bayes and K-Nearest Neighbor (KNN) classifiers are considered for evaluating the selected features as basis for the attack detection. Experimental results using CICIDS-2018 dataset show that KNN outperforms Naïve Bayes classifier with the accuracy level of 99%.

1.
S. K.
Setianto
,
D.
Jatikusumo
, "
Employee Turnover Analysis Using Comparison of Decision Tree and Naïve Bayes Prediction Algorithms on K-Means Clustering Algorithms at PT. AT
,"
Jurnal Mantik,
vol.
4
, no.
3
, pp.
1573
1581
,
2020
.
2.
N.
Sugianti
,
Y.
Galuh
,
S.
Fatia
,
K. F. H.
Holle
, "
Deteksi Serangan Distributed Denial of Services (DDOS) Berbasis HTTP Menggunakan Metode Fuzzy Sugeno
," (
HTTP-based Distributed Denial of Services (DDOS) Attack Detection Using Fuzzy Sugeno Method
,) JISKa, vol.
4
, no.
3
, pp.
18
26
,
2020
.
3.
J. C. J.
Sihombing
,
D. P.
Kartikasari
,
A.
Bhawiyuga
, "
Implementasi Sistem Deteksi dan Mitigasi Serangan Distributed Denial of Service (DDoS) menggunakanSVM Classifier pada Arsitektur Software-Defined Network (SDN
)," (
Implementation of Distributed Denial of Service (DDoS) Attack Detection and Mitigation System using SVM Classifier on Software-Defined Network (SDN) Architecture
)
Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer,
vol.
3
, no.
10
, pp.
9608
9613
,
2019
.
4.
M. K.
Harto
,
A.
Basuki
, "
Deteksi Serangan DDoS Pada Jaringan Berbasis SDN Dengan Klasifikasi Random Forest
," (
DDoS Attack Detection on SDN-Based Networks with Random Forest Classification
)
Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer,
vol.
5
, no.
4
, pp.
1329
1333
,
2021
.
5.
I.
Ramadhan
,
P.
Sukarno
,
M. A.
Nugroho
, "
Analisis Perbandingan Algoritma K-Nearest Neighbor dan Decision Tree Dalam Mendeteksi Distributed Denial of Service
," (
Comparative Analysis of K-Nearest Neighbor and Decision Tree Algorithms in Detecting Distributed Denial of Service
)
e-Proceeding of Engineering,
vol.
6
, no.
2
, pp.
8548
8558
,
2019
.
6.
I.
Riadi
,
R.
Umar
,
F. D.
Aini
, "
Analisis Perbandingan Detection Traffic Anomaly Analisis Perbandingan Detection Traffic Anomaly Machine (SVM
)," (
Analisis Perbandingan Deteksi Traffic Anomali Analisis Perbandingan Deteksi Traffic Anomali Machine (SVM
))
ILKOM Jurnal Ilmiah,
vol.
11
, no.
1
, pp.
17
22
,
2019
.
7.
M.
Aziz
,
R.
Umar
,
F.
Ridho
, "
Implemetasi Jaringan Saraf Tiruan Untuk Mendeteksi Serangan DDoS Pada Forensik Jaringan
," (
Artificial Neural Network Implementation to Detect DDoS Attacks in Network Forensics
)
QUERY: Jurnal Sistem Informasi,
vol.
3
, no.
1
, pp.
46
52
,
2019
.
8.
R.
Purba
,
W. S.
Lestari
,
M.
Ulina
, "
Deteksi Serangan DDoS Mengunakan Deep Q-Network
," (
DDoS Attack Detection Using Deep Q-Network
)
Jurnal Teknik Informatika dan Sistem Informasi,
vol.
9
, no.
1
, pp.
648
658
,
2022
.
9.
E. O.
Nasution
,
A.
Basuki
, "
Implementasi Algoritme C5.0 Untuk Klasifikasi Serangan DDoS
," (
Implementation of C5.0 Algorithm for DDoS Attack Classification
)
Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer,
vol.
5
, no.
1
, pp.
389
395
,
2021
.
10.
M.
Farid
,
I.
Wahidah
,
A. I.
Irawan
, "
Analisis Pendeteksian Serangan Denial Of Service (DOS) Menggunakan Logika Fuzzy Metode Mamdani Pada Jaringan Internet of Things (IOT
)," (
Analysis of Denial Of Service (DOS) Attack Detection Using Fuzzy Logic Mamdani Method on Internet of Things (IOT) Networks
)
e-Proceeding of Engineering,
vol.
8
, no.
1
, pp.
121
128
,
2021
.
11.
M. M.
Azis
,
Y.
Azhar
, Saifuddin, "
Analisa Sistem Identifikasi DDoS Menggunakan KNN Pada Jaringan Software Defined Network (SDN
)," (
Analysis of DDoS Identification System Using KNN on Software Defined Network (SDN) Networks
)
REPOSITOR,
vol.
2
, no.
7
, pp.
915
922
,
2020
.
12.
R.
Doshi
,
N.
Apthorpe
,
N.
Feamster
, "
Machine Learning DDoS Detection for Consumer Internet of Things Devices
,"
IEEE Security and Privacy Workshops,
pp.
29
35
,
2018
.
13.
S.
Dong
,
M.
Sarem
, "
DDoS Attack Detection Method Based on Improved KNN With the Degree of DDoS Improved KNN With the Degree of DDoS
,"
IEEE Access,
p.
5039
5048
,
2019
.
14.
A. V.
Kachavimath
,
S. V.
Nazare
,
S. S.
Akki
, "
Distributed Denial of Service Attack Detection using Naïve Bayes and K-Nearest Neighbor for Network Forensics
,"
International Conference on Innovative Mechanisms for Industry Applications (ICIMIA).,
pp.
711
717
,
2020
.
15.
K. G.
Reddy
,
P. S.
Thilagam
, "
Naïve Bayes Classifier to Mitigate the DDoS Attacks Severity in Ad-Hoc Networks
,"
International Journal of Communication Networks and Information Security (IJCNIS),
vol.
12
, no.
2
, pp.
221
226
,
2020
.
16.
L.
Chena
,
Y.
Zhang
,
Q.
Zhao
,
G.
Gen
,
Z.
Yan
, "
Detection of DNS DDoS Attacks with Random Forest Algorithm on Spark
,"
International Workshop on Big Data and Networks Technologies,
p.
310
315
,
2018
.
17.
D.
Dedy
,
A.
Cherid
, "
Data Mining Pengolahan Data Calon Pekerja Migran Indonesia (PMI) Dengan Penerapan Metode Klustering K-Means dan Metode Klasifikasi K-Nearest Neighbor (KNN): Studi Kasus PT. Sam
,"
Jurnal Ilmiah Teknik Informatika,
vol.
9
, no.
2
, pp.
166
182
,
2020
.
This content is only available via PDF.
You do not currently have access to this content.