Soil contains crucial macro and micronutrients for plant growth and development. However, to enhance soil fertility; growers apply fertilizers for “re-filling” the supply of nutrients to the soil so that they can continue to cultivate crops. Inorganic fertilizers do not release according to demand; they dissolve easily and release nitrogen faster than the plants can utilize them. Also due to the poor mobility of zinc, plants are in a need of a constant supply of zinc, for excellent growth and development. There are three main sources of nitrogen: urea, ammonium, and nitrate. Urea fertilizers although have a direct impact on plants it does not release according to demand. With the use of nanotechnology, nano-sized particles are produced and synthesized. Urea nano fertilizer and Zinc oxide nanoparticles are the widespread nanoparticles. The current review deals with the importance of nano forms of nitrogen and zinc as essential growth macro and microelements for plants.

1.
Krapp
A.
Plant nitrogen assimilation and its regulation: A complex puzzle with missing pieces
.
Curr Opin Plant Biol [Internet].
2015
;
25
:
115
22
. Available from:
2.
Abdel-Aziz
HMM
,
Hasaneen
MNA
,
Omer
AM
.
Nano chitosan-NPK fertilizer enhances the growth and productivity of wheat plants grown in sandy soil
.
Spanish J Agric Res [Internet].
2016
Mar 2;
14
(
1
):
e0902
. Available from: http://revistas.inia.es/index.php/sjar/article/view/8205
3.
Kottegoda
N.
,
Sandaruwan
C.
,
Priyadarshana
G.
,
Siriwardhana
A.
Urea-Hydroxyapatite Nanohybrids for Slow.
2017
;(February).
4.
Pereira
EI
,
Minussi
FB
,
Cruz
CCT
,
Bernardi
ACC
,
Ribeiro
C.
,
Luiz
RW
, et al
Urea−Montmorillonite-Extruded Nanocomposites A Novel Slow-.pdf
.
J Agric Food Chem.
2012
;
60
:
5267
72
.
5.
Roshanravan
B.
,
Soltani
SM
,
Mahdavi
F.
,
Rashid
SA
,
Yusop
MK
.
Preparation of encapsulated urea-kaolinite controlled release fertiliser and their effect on rice productivity
.
Chem Speciat Bioavailab.
2014
;
26
(
4
):
249
56
.
6.
Wanyika
H.
,
Gatebe
E.
,
Kioni
P.
,
Tang
Z.
,
Gao
Y.
Mesoporous silica nanoparticles carrier for urea: Potential applications in agrochemical delivery systems
.
J Nanosci Nanotechnol.
2012
;
12
(
3
):
2221
8
.
7.
Rahmat
H.
,
Ganjar
F.
,
Uswatul
C.
,
Sayekti
W.
,
Ari
HR
.
Effectiveness of urea nanofertilizer based aminopropyltrimethoxysilane (APTMS)-zeolite as slow release fertilizer system
.
African J Agric Res.
2015
;
10
(
14
):
1785
8
.
8.
Kundu
S.
,
Adhikari
T.
,
Mohanty
SR
,
Rajendiran
S.
,
Vassanda
Coumar
M.,
Saha
JK
, et al
Reduction in nitrous oxide emission from nano zinc oxide and nano rock phosphate coated urea
.
Agrochimica.
2016
;
60
(
2
):
59
70
.
9.
Santos BR
Dos
,
Bacalhau
FB
,
Pereira
TDS
,
Souza
CF
,
Faez
R.
Chitosan-montmorillonite microspheres: A sustainable fertilizer delivery system
.
Carbohydr Polym [Internet].
2015
;
127
:
340
6
. Available from:
10.
Madusanka
N.
,
Sandaruwan
C.
,
Kottegoda
N.
,
Sirisena
D.
,
Munaweera
I.
,
De Alwis
A.
, et al
Urea–hydroxyapatite-montmorillonite nanohybrid composites as slow release nitrogen compositions
.
Appl Clay Sci [Internet].
2017
;
150
(October):
303
8
. Available from:
11.
Ramírez-Rodríguez
GB
,
Dal Sasso
G.
,
Carmona
FJ
,
Miguel-Rojas
C.
,
Pérez-De-Luque
A.
,
Masciocchi
N.
, et al
Engineering Biomimetic Calcium Phosphate Nanoparticles: A Green Synthesis of Slow-Release Multinutrient (NPK) Nanofertilizers
.
ACS Appl Bio Mater.
2020
;
3
(
3
):
1344
53
.
12.
Witte
CP
.
Urea metabolism in plants
.
Plant Sci [Internet].
2011
;
180
(
3
):
431
8
. Available from:
13.
Gaiotti
F.
,
Lucchetta
M.
,
Rodegher
G.
,
Lorenzoni
D.
,
Longo
E.
,
Boselli
E.
, et al
Urea-Doped Calcium Phosphate Nanoparticles as Sustainable Nitrogen Nanofertilizers for Viticulture: Implications on Yield and Quality of Pinot Gris Grapevines
.
Agronomy [Internet].
2021
May 21;
11
(
6
):
1026
. Available from: https://www.mdpi.com/2073-4395/11/6/1026
14.
Gierth
M.
,
Mäser
P.
Potassium transporters in plants - Involvement in K+acquisition, redistribution and homeostasis
.
FEBS Lett [Internet].
2007
May 25;
581
(
12
):
2348
56
. Available from: http://doi.wiley.com/10.1016/j.febslet.2007.03.035
15.
Montalvo
D.
,
Degryse
F.
,
da Silva
RC
,
Baird
R.
,
McLaughlin
MJ
.
Agronomic Effectiveness of Zinc Sources as Micronutrient Fertilizer.
In
2016
. p.
215
67
. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0065211316300621
16.
Yuvaraj
M.
,
Subramanian
KS
.
Carbon sphere-zinc sulphate nanohybrids for smart delivery of zinc in rice (Oryza sativa L
).
Sci Rep [Internet].
2021
May 4;
11
(
1
):
9508
. Available from: https://www.nature.com/articles/s41598-021-89092-9
17.
Sinclair
SA
,
Krämer
U.
The zinc homeostasis network of land plants
.
Biochim Biophys Acta - Mol Cell Res [Internet].
2012
;
1823
(
9
):
1553
67
. Available from:
18.
Olsen
LI
,
Palmgren
MG
.
Many rivers to cross: The journey of zinc from soil to seed
.
Front Plant Sci.
2014
;
5
(FEB).
19.
Sturikova
H.
,
Krystofova
O.
,
Huska
D.
,
Adam V.
Zinc
,
zinc nanoparticles and plants
.
J Hazard Mater [Internet].
2018
May;
349
:
101
10
. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0304389418300402
20.
Cabot
C.
,
Martos
S.
,
Llugany
M.
,
Gallego
B.
,
Tolrà
R.
,
Poschenrieder
C.
A Role for Zinc in Plant Defense Against Pathogens and Herbivores
.
Front Plant Sci [Internet].
2019
Oct 4;
10
. Available from: https://www.frontiersin.org/article/10.3389/fpls.2019.01171/full
21.
Robson
AD
, editor.
Zinc in Soils and Plants [Internet]
. Dordrecht:
Springer Netherlands
;
1993
. Available from: http://link.springer.com/10.1007/978-94-011-0878-2
22.
Saravanan
VS
,
Madhaiyan
M.
,
Thangaraju
M.
Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus
.
Chemosphere.
2007
;
66
(
9
):
1794
8
.
23.
Milani
N.
,
McLaughlin
MJ
,
Stacey
SP
,
Kirby
JK
,
Hettiarachchi
GM
,
Beak
DG
, et al
Dissolution kinetics of macronutrient fertilizers coated with manufactured zinc oxide nanoparticles
.
J Agric Food Chem.
2012
;
60
(
16
):
3991
8
.
24.
Duhan
JS
,
Kumar
R.
,
Kumar
N.
,
Kaur
P.
,
Nehra
K.
,
Duhan
S.
Nanotechnology: The new perspective in precision agriculture
.
Biotechnol Reports.
2017
;
15
(March):
11
23
.
25.
Manikandan
A.
,
Subramanian
KS
.
Urea Intercalated Biochar – a Slow Release Fertilizer Production and Characterisation.
2013
; (September
2015
).
26.
Guo
H.
,
White
JC
,
Wang
Z.
,
Xing
B.
Nano-enabled fertilizers to control the release and use efficiency of nutrients
.
Curr Opin Environ Sci Heal [Internet].
2018
;
6
:
77
83
. Available from:
27.
Kottegoda
N.
,
Sandaruwan
C.
,
Perera
P.
,
Madusanka
N.
,
Karunaratne
V.
Modified Layered Nanohybrid Structures for the Slow Release of Urea
.
Nanosci &Nanotechnology-Asia.
2015
;
4
(
2
):
94
102
.
28.
Raliya
R.
,
Tarafdar
JC
.
ZnO Nanoparticle Biosynthesis and Its Effect on Phosphorous-Mobilizing Enzyme Secretion and Gum Contents in Clusterbean (Cyamopsis tetragonoloba L
.).
Agric Res.
2013
;
2
(
1
):
48
57
.
29.
Zhao
L.
,
Peralta-Videa
JR
,
Ren
M.
,
Varela-Ramirez
A.
,
Li
C.
,
Hernandez-Viezcas
JA
, et al
Transport of Zn in a sandy loam soil treated with ZnO NPs and uptake by corn plants: Electron microprobe and confocal microscopy studies
.
Chem Eng J [Internet].
2012
;
184
:
1
8
. Available from:
30.
Liu
X.
,
Wang
F.
,
Shi
Z.
,
Tong
R.
,
Shi
X.
Bioavailability of Zn in ZnO nanoparticle-spiked soil and the implications to maize plants
.
J Nanoparticle Res [Internet].
2015
;
17
(
4
). Available from:
31.
Hussain
A.
,
Ali
S.
,
Rizwan
M.
,
Zia ur
Rehman
M.,
Javed
MR
,
Imran
M.
, et al
Zinc oxide nanoparticles alter the wheat physiological response and reduce the cadmium uptake by plants
.
Environ Pollut [Internet].
2018
;
242
:
1518
26
. Available from:
32.
Rizwan
M.
,
Ali
S.
,
Ali
B.
,
Adrees
M.
,
Arshad
M.
,
Hussain
A.
, et al
Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat
.
Chemosphere [Internet].
2019
;
214
:
269
77
. Available from:
33.
Yoon
SJ
,
Kwak J
Il
,
Lee
WM
,
Holden
PA
,
An
YJ
.
Zinc oxide nanoparticles delay soybean development: A standard soil microcosm study
.
Ecotoxicol Environ Saf [Internet].
2014
;
100
(
1
):
131
7
. Available from:
34.
Lawre
S.
,
Laware
SL
,
Raskar
S.
Influence of Zinc Oxide Nanoparticles on Growth, Flowering and Seed Productivity in Onion Influence of zinc and iron nano-prtilces on chickpea: nodulation and growth View project Metal Oxide Nanomaterials View project Flowering and Seed Productivity in On
.
Orig Res Artic Influ Zinc Oxide Nanoparticles Growth [Internet].
2014
;
3
(
7
):
874
81
. Available from: http://www.ijcmas.com
35.
Kottegoda
N.
,
Sandaruwan
C.
,
Priyadarshana
G.
,
Siriwardhana
A.
,
Rathnayake
UA
,
Berugoda Arachchige
DM
, et al
Urea- Hydroxyapatite Nanohybrids for Slow Release of Nitrogen
.
ACS Nano [Internet].
2017
Feb 28;
11
(
2
):
1214
21
. Available from:
36.
Gunaratne
GP
,
Kottegoda
N.
,
Madusanka
N.
,
Munaweera
I.
,
Sandaruwan
C.
,
Priyadarshana
WMGI
, et al
Two new plant nutrient nanocomposites based on urea coated hydroxyapatite: Efficacy and plant uptake
.
Indian J Agric Sci.
2016
;
86
(
4
):
494
9
.
37.
Gao
X.
,
Li
C.
,
Zhang
M.
,
Wang
R.
,
Chen
B.
Controlled release urea improved the nitrogen use efficiency, yield and quality of potato (Solanum tuberosum L.) on silt loamy soil
.
F Crop Res [Internet].
2015
;
181
:
60
8
. Available from:
38.
Cakmak
I.
Enrichment of fertilizers with zinc: An excellent investment for humanity and crop production in India
.
J Trace Elem Med Biol [Internet].
2009
;
23
(
4
):
281
9
. Available from:
39.
García-Gómez
C.
,
García
S.
,
Obrador
AF
,
González
D.
,
Babín
M.
,
Fernández
MD
.
Effects of aged ZnO NPs and soil type on Zn availability, accumulation and toxicity to pea and beet in a greenhouse experiment
.
Ecotoxicol Environ Saf [Internet].
2018
;
160
(May):
222
30
. Available from:
40.
Mahajan
P.
,
Dhoke
SK
,
Khanna
AS
.
Effect of Nano-ZnO Particle Suspension on Growth of Mung (Vigna radiata) and Gram (Cicer arietinum) Seedlings Using Plant Agar Method
.
J Nanotechnol [Internet].
2011
;
2011
:
1
7
. Available from: http://www.hindawi.com/journals/jnt/2011/696535/
41.
Subbaiah
LV
,
Prasad
TNVKV
,
Krishna
TG
,
Sudhakar
P.
,
Reddy
BR
,
Pradeep
T.
Novel Effects of Nanoparticulate Delivery of Zinc on Growth, Productivity, and Zinc Biofortification in Maize (Zea mays L
.).
J Agric Food Chem.
2016
;
64
(
19
):
3778
88
.
42.
Mossa
AW
,
Young
SD
,
Crout
NMJ
.
Zinc uptake and phyto-toxicity: Comparing intensity- and capacity-based drivers
.
Sci Total Environ [Internet].
2020
;
699
:
134314
. Available from:
43.
Jahan
S.
,
Alias
YB
,
Bakar
AFBA
,
Yusoff I
Bin
.
Toxicity evaluation of ZnO and TiO2 nanomaterials in hydroponic red bean (Vigna angularis) plant: Physiology, biochemistry and kinetic transport
.
J Environ Sci (China) [Internet].
2018
;
72
:
140
52
. Available from:
44.
Bala
R.
,
Kalia
A.
,
Dhaliwal
SS
.
Evaluation of Efficacy of ZnO Nanoparticles as Remedial Zinc Nanofertilizer for Rice
.
J Soil Sci Plant Nutr [Internet].
2019
Jun 8;
19
(
2
):
379
89
. Available from: http://link.springer.com/10.1007/s42729-019-00040-z
45.
Akanbi-Gada
MA
,
Ogunkunle
CO
,
Vishwakarma
V.
,
Viswanathan
K.
,
Fatoba
PO
.
Phytotoxicity of nano-zinc oxide to tomato plant (Solanum lycopersicum L.): Zn uptake, stress enzymes response and influence on non-enzymatic antioxidants in fruits
.
Environ Technol Innov [Internet].
2019
;
14
(January):
100325
. Available from:
46.
Rao
S.
,
Shekhawat
GS
.
Toxicity of ZnO engineered nanoparticles and evaluation of their effect on growth, metabolism and tissue specific accumulation in Brassica juncea
.
J Environ Chem Eng [Internet].
2014
;
2
(
1
):
105
14
. Available from:
47.
Islam
F.
,
Yasmeen
T.
,
Riaz
M.
,
Arif
MS
,
Ali
S.
,
Raza
SH
.
Proteus mirabilis alleviates zinc toxicity by preventing oxidative stress in maize (Zea mays) plants
.
Ecotoxicol Environ Saf [Internet].
2014
Dec;
110
:
143
52
. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0147651314003984
48.
Islam
F.
,
Yasmeen
T.
,
Riaz
M.
,
Arif
MS
,
Ali
S.
,
Raza
SH
.
Proteus mirabilis alleviates zinc toxicity by preventing oxidative stress in maize (Zea mays) plants
.
Ecotoxicol Environ Saf [Internet].
2014
;
110
:
143
52
. Available from:
49.
Bandyopadhyay
S.
,
Plascencia-villa
G.
,
Mukherjee
A.
,
Rico
CM
.
Science of the Total Environment Comparative phytotoxicity of ZnO NPs, bulk ZnO, and ionic zinc onto the alfalfa plants symbiotically associated with Sinorhizobium meliloti in soil
.
Sci Total Environ [Internet].
2015
;
515–516
:
60
9
. Available from:
This content is only available via PDF.
You do not currently have access to this content.