Optical wireless (OW) communication systems give an overview of its versatility, allowing it to function in both close (individual and internal) and far (public and hybrid) ranges. Key needs, application framework, main flaws, suitable deficiency approaches, and current and/or future developments are covered for each of these OW subfields. Ultra-fast point-to-point data transmission is the setting in which personal communication systems are provided. Next-generation Giga-IR standards that boost the speed of personal communication systems are offered together with the most relevant application framework and parameters. When it comes to internal networks, researchers have been looking at how to understand the dispersed nature of internal OW channels, how far a user may go, and how to stop the spread. The availability of visible light communication systems is usually acknowledged to be the most crucial aspect of future indoor OW systems. Utilizing hybrid visible or visible/infrared LEDs, these devices provide both illumination and communication. The atmospheric impacts on the optical channel, as well as ways for mitigating these effects to improve throughput and extend link lengths, are the primary topics of debate when it comes to outdoor systems. Today, outdoor OW can support up to 10 Gb/s Ethernet speeds in metropolitan areas, as well as LAN connections are expected to rise as faster as well as more dependable optical components enter the market. In the last section of this article, we will discuss Hybrid Optical Wireless / Radio Frequency (OW / RF) systems. These systems have an extra RF connection for improving the reliability of the system. The importance of effective methods of cooperation between dependable RF subsystems and broad-band OW systems cannot be overstated. The goal of this article is to examine the development and standardisation of external OWC systems, as well as the obstacles these systems encounter when applied to the development and implementation of smart cities.

1.
F.
Gfeller
,
U.
Bapst
,
Wireless in-house data communication via diffuse infrared radiation
.
Proc IEEE.
67
(
11
),
1474
1486
(
1979
)
2.
Infrared Data Association (IrDA)
http://www.irda.org
3.
Visible Light Communications Consortium
http://www.vlcc.net
4.
VWS
Chan
,
Optical satellite networks
.
IEEE/OSA J Lightwave Technol.
21
(
11
),
2811
2827
(
2003
)
5.
IEEE Standard for Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications
(
1997
)
6.
IEEE 802.15 Working Group for WPAN
http://www.ieee802.org/15/
7.
IrDA, Advanced Infrared (AIr) MAC Draft Protocol Specification–Version 1.0, Infrared Data Association
. (
1999
)
8.
IrDA, Advanced Infrared Logical Link Control (AIrLC) Specification–Version 0.1, Infrared Data Association
. (
1999
)
9.
IrDA, Advanced Infrared Physical Layer Specification (AIr-PHY) –Version 1.0, Infrared Data Association
. (
1998
)
10.
IrDA, Point and Shoot Profile–Version 1.1, Infrared Data Association
. (
2000
)
11.
IrDA, Physical Layer Specification–Version 1.4, Infrared Data Association
.(
2001
)
12.
IrDA, Serial Infrared Physical Layer Specification–Giga-IR Addition Version 1.0, Infrared Data Association
. (
2009
)
13.
IEC 60825-1, Safety of Laser Products–Part 1: equipment classification, requirements, and user’s guide
, edition 1.2.
International Electrotechnical Commission
(
2001
)
14.
IrDA, Serial Infrared Link Access Protocol (IrLAP) –Version 1.1, Infrared Data Association
. (
1996
)
15.
IrDA, Link Management Protocol (IrLMP)–Version 1.1, Infrared Data Association
. (
1996
)
16.
IrDA, Tiny TP: a flow-control mechanism for use with IrLMP–Version 1.1, Infrared Data Association
. (
1996
)
17.
IrDA, Object Exchange Protocol (OBEX™)–Version 1.5, Infrared Data Association
. (
2009
)
18.
IrDA, Link Access Protocol Specification for Giga-IR Addition–Version 1.0, Infrared Data Association
. (
2009
)
19.
R.
Haldhar
,
D.
Prasad
and
A.
Saxena
,
Journal of Environmental Chemical Engineering
6
(
2
),
2290
2301
(
2018
).
20.
M. S.
Kaswan
and
R.
Rathi
,
Journal of cleaner production
231
,
1182
1191
(
2019
).
21.
B.
Bhyan
,
S.
Jangra
,
M.
Kaur
and
H.
Singh
,
Int J Pharm Sci Rev Res
9
(
2
),
9
15
(
2011
).
22.
S.
Singh
,
G.
Singh
,
C.
Prakash
and
S.
Ramakrishna
,
Journal of Manufacturing Processes
55
,
288
306
(
2020
).
23.
R. D.
Jilte
,
R.
Kumar
,
M. H.
Ahmadi
and
L.
Chen
,
Applied Thermal Engineering
161
,
114199
(
2019
).
24.
G.
Singh
,
M. K.
Gupta
,
M.
Mia
and
V. S.
Sharma
,
The International Journal of Advanced Manufacturing Technology
97
(
1
),
481
494
(
2018
).
25.
S.
Datta
,
J.
Singh
,
S.
Singh
and
J.
Singh
,
Environmental Science and Pollution Research
23
(
9
),
8227
8243
(
2016
).
26.
C.
Prakash
and
M.
Uddin
,
Surface and Coatings Technology
326
,
134
145
(
2017
).
27.
M.
Singh
and
R.
Rathi
,
International Journal of Lean Six Sigma
(
2018
).
A.
Khamparia
,
D.
Gupta
,
N. G.
Nguyen
,
A.
Khanna
,
B.
Pandey
and
P.
Tiwari
,
IEEE Access
7
,
7717
7727
(
2019
).
28.
K.
Raza
,
N.
Thotakura
,
P.
Kumar
,
M.
Joshi
,
S.
Bhushan
,
A.
Bhatia
,
V.
Kumar
,
R.
Malik
,
G.
Sharma
and
S. K.
Guru
,
International journal of pharmaceutics
495
(
1
),
551
559
(
2015
).
29.
G.
Dhiman
,
K. K.
Singh
,
M.
Soni
,
A.
Nagar
,
M.
Dehghani
,
A.
Slowik
,
A.
Kaur
,
A.
Sharma
,
E. H.
Houssein
and
K.
Cengiz
,
Expert Systems with Applications
167
,
114150
(
2021
).
30.
M. A.
Darwish
,
A. V.
Trukhanov
,
O. S.
Senatov
,
A. T.
Morchenko
,
S. A.
Saafan
,
K. A.
Astapovich
,
S. V.
Trukhanov
,
E. L.
Trukhanova
,
A. A.
Pilyushkin
and
A. S. B.
Sombra
,
Nanomaterials
10
(
3
),
492
(
2020
).
31.
K. V.
Mahesh
,
S. K.
Singh
and
M.
Gulati
,
Powder technology
256
,
436
449
(
2014
).
32.
P. S.
Singh
,
T.
Singh
and
P.
Kaur
,
Annals of Nuclear Energy
35
(
6
),
1093
1097
(
2008
).
This content is only available via PDF.
You do not currently have access to this content.