A biocomposite material is derived from more than two constituent polymer materials, Initially, as raw materials (for instance-Agriculture and sugarcane waste) and other is named as binder (fungal, cordia myxa, resins) is used to combine the raw materials to create a strong and efficient Biocomposite material/object. In the present Review work, the significant objective is to develop a renewable and sustainable object by applying different bio-degradable raw materials like sugarcane bagasse, wheat straw, saw dust, coir etc., and combining these raw materials with a bio-glue as a binder for the raw materials. The authors have presented and provides factual information regarding utilization of fungal mycelium as a binding agent. The fungal mycelium like Trametes Ochracae, Trametes Versicolor, Ganoderma sessile, Ganoderma Lucidum, and Pleurotus ostreatus are used like binders and the hyphal structure of mycelium spreads among the processed raw materials and binds all these materials to create an efficient, more flexible and strengthens the structure of the material which can replace other non-renewable hard objects like chair, bricks, cup and it can also increase the resistance of the Biocomposites material. Mycelium derived Biocomposites represents a potential sustainable lightweight alternative material due to their low energy consumption and supports sustainable development. The agricultural wastes can be used to prepare polymer composites made of the fiber for commercial applications and these can be a great marketing product too. Reducing the growing situations of global warming due to increase in the pollution and exhaustion of precious items which cannot be replaced has been the main objective of the article to create a sustainable Biocomposites material with mycelium with extra resistance abilities to the material which can be long lasting and eco-friendly. This review illustrates the preparation of Biocomposite material, different mechanical and physio-chemical properties of the material and their applications in manufacturing industries. Moreover, focused on comparative analysis of mycelium Biocomposites with other raw materials and different binding material.

1.
A.
Mohammed
,
A.
Omran
,
Z.
Hasan
,
R. A.
Ilyas
, and
S. M.
Sapan
,
Polymers
13
,
3624
3624
(
2021
).
3.
T.
Manu
,
A. R.
Nazmi
,
B.
Shahri
,
N.
Emerson
,
T.
Huber
, and
Biocomposites, A Review of Materials and Perception
.
Materials Today Communications
103308
(
2022
).
4.
A. N.
Netravali
and
C. M.
Pastore
,
2014
.
5.
A. A. B. A.
Mohammed
,
A. A. B.
Omran
,
Z.
Hasan
,
R. A.
Ilyas
, and
S. M.
Sapuan
,
Structure, Properties and Characterization: A Review
13
(
2021
).
6.
A. A. B.
Orman
,
A. A. B. A.
Mohammed
,
S. M.
Sapuan
,
R. A.
Ilyas
,
M. R.
Asyraf
,
S. S. R.
Koloor
,
M.
Petru
, and N.
Micro-And, Polymer Composite Materials: A Review
(
2021
).
7.
A.
Bari
,
S.
Zuhri
,
M. Y. M.
Sapuan
,
S. M.
Ishak
,
M. R.
Ilyas
,
R. A.
Asyraf
, and M. R. M,
2021
.
8.
Z. N.
Diyana
,
R.
Jumaidin
,
M. Z.
Selamat
,
I.
Ghazali
,
N.
Julmohammad
,
N.
Huda
, and
R. A.
Ilyas
,
2021
.
9.
H.
Vasudev
,
L.
Thakur
,
H.
Singh
and
A.
Bansal
,
Surface Topography: Metrology and Properties
9
(
3
),
035022
(
2021
).
10.
Rajchenberg
,
Mycologia
103
,
677
702
(
2011
).
11.
M. R.
Islam
,
G.
Tudryn
,
R.
Bucinell
,
L.
Schadler
, and
R. C.
Picu
,
2017
.
12.
I.
Baglivo
,
S.
Ragucci
,
P.
D’incecco
,
N.
Landi
,
R.
Russo
,
F.
Faoro
,
P. V.
Pedone
, and
A. D.
Maro
,
International journal of molecular sciences
21
(
2020
).
13.
W.
Sun
,
M.
Tajvidi
,
C.
Howell
, and
C. G.
Hunt
,
ACS applied materials & interfaces
12
(
2020
).
14.
H.
Vasudev
,
L.
Thakur
,
H.
Singh
and
A.
Bansal
,
Kovove
Materialy
,
Metallic Materials
56
(
1
),
55
63
(
2018
).
15.
B.
Market
, “
Published date: Feb 2022 markets and marketsTM research private ltd. tower b5,”.
16.
S.
Vandelook
,
E.
Elsacker
,
A. V.
Wylick
, and
L. D.
Laet
,
Fungal biology and biotechnology
8
(
2021
).
17.
A.
Balaji
,
B.
Karthikeyan
, and
C. S.
Raj
,
International Journal of Cemtech Research
7
,
223
233
(
2014
).
18.
B. C.
Suddell
,
Proceedings of the symposium on natural fibres
20
,
71
82
(
2008
).
19.
M. P.
Staiger
and
N.
Tucker
,
Properties and performance of natural-fibre composites
269
300
(
2008
).
20.
S. M.
Sapuan
,
N.
Harun
, and
K. A.
Abbas
,
Journal of Tropical Agriculture
45
,
66
68
(
2007
).
21.
S. M.
Sapuan
and
M. A.
Maleque
,
Materials & Design
26
,
65
71
(
2005
).
22.
C.
Baley
,
F.
Busnel
, and
Y.
Grohens
,
Composites Part A: Applied Science and Manufacturing
37
,
1626
1637
(
2006
).
23.
W.
Rahman
,
L. T.
Sin
, and
A. R.
Rahmat
,
Approaches to improve compatibility of starch filled polymer system: A review
29
(
2009
).
24.
L.
Boopathi
,
P. S.
Sampath
, and
K.
Mylsamy
,
2012
.
25.
H.
Vasudev
,
L.
Thakur
,
H.
Singh
and
A.
Bansal
,
Materials Today Communications
25
,
101626
(
2020
).
26.
K. G.
Satyanarayana
,
J. L.
Guimaraes
, and
F.
Wypych
,
Composites Part A-Applied Science and Manufacturing
38
,
1694
1709
(
2007
).
27.
G.
Singh
,
H.
Vasudev
,
A.
Bansal
and
S.
Vardhan
,
Materials Research Express
7
(
2
),
026512
(
2020
).
28.
Y. R.
Loh
,
D.
Sujan
,
M. E.
Rahman
, and
C. A.
Das
,
2013
.
29.
A.
Justo
and
D. S.
Hibbett
,
Taxon
60
,
1567
1583
(
2011
).
30.
M.
Mäkelä
,
S.
Galkin
,
A.
Hatakka
, and
T.
Lundell
,
Enzyme and Microbial technology
30
,
542
549
(
2002
).
31.
S. V.
Shleev
,
O. V.
Morozova
,
O. V.
Nikitina
,
E. S.
Gorshina
,
T. V.
Rusinova
,
V. A.
Serezhenkov
,. Yaropolov, and A. I,
Biochimie
86
,
693
703
(
2004
).
32.
L.
Gou
,
S.
Li
,
J.
Yin
,
T.
Li
, and
X.
Liu
,
Construction and Building Materials
304
(
2021
).
33.
N.
Attias
,
M.
Reid
,
S. C.
Mijowska
,
I.
Dobryden
,
M.
Isaksson
,
B.
Pokroy
,. Abitbol, and T,
Advanced Sustainable Systems
5
(
2021
).
34.
M.
Mandegari
,
A. M.
Petersen
,
Y.
Benjamin
, and
J. F.
Görgens
,
Sugarcane biofuel production in South Africa
(
Guatemala, the Philippines, Argentina, Vietnam, Cuba, and Sri Lanka
,
2019
), pp.
319
346
.
35.
K. A.
Figueroa-Rodríguez
,
F.
Hernández-Rosas
,
B.
Figueroa-Sandoval
,
J.
Velasco-Velasco
, and
N. A.
Rivera
,
International Journal of Environmental Research and Public Health
16
(
2019
).
36.
S. C.
Rabelo
,
A. C. D.
Costa
, and
C. E. V.
Rossel
,
Sugarcane: Agricultural Production
365
381
(
2015
).
37.
A.
Balaji
,
B.
Karthikeyan
, and
C. S.
Raj
,
International Journal of Cemtech Research
7
,
223
233
(
2014
).
38.
J. M.
Paturau
,
Alternative, Op, Byproducts, and Agroindustries
,
1987
.
39.
S. M.
Luz
,
A. R.
Goncalves
,
Del’arco
, and A. P. Jr,
Composites Part A: Applied Science and Manufacturing
38
,
1455
1461
(
2007
).
40.
S.
Hattallia
,
A.
Benaboura
,
F.
Ham-Pichavant
,
A.
Nourmamode
, and
A.
Castellan
,
Polymer Degradation and Stability
76
,
259
264
(
2002
).
41.
Y. R.
Loh
,
D.
Sujan
,
M. E.
Rahman
, and
C. A.
Das
,
2013
.
42.
Y.
Cao
,
S.
Shibata
, and
I.
Fukumoto
,
Composites: Part A
37
,
423
429
(
2006
).
43.
J.
Rojas
,
M.
Bedoya
, and
Y.
Ciro
,
2015
.
44.
T. L.
Bezerra
and
A. J.
Ragauskas
,
Biofuels, Bioproducts and Biorefining
10
,
634
647
(
2016
).
45.
M.
Singh
,
H.
Vasudev
and
R.
Kumar
,
Materials Today: Proceedings
26
,
2277
2282
(
2020
).
46.
A.
Sharma
,
M.
Thakur
,
M.
Bhattacharya
,
T.
Mandal
, and
S.
Goswami
,
Biotechnology Reports
21
(
2019
).
47.
U.
Kamran
,
H. N.
Bhatti
,
S.
Noreen
,
M. A.
Tahir
, and
S. J.
Park
,
Chemosphere
291
(
2022
).
48.
A. N.
Kumar
,
R.
Katakojwala
,
K.
Amulya
, and
S. V.
Mohan
,
Chemosphere
279
(
2021
).
49.
E. C.
Ramires
,
J. D.
Megiatto
, Jr
,
C.
Gardrat
,
A.
Castellan
, and
E.
Frollini
,
Biotechnology and bioengineering
107
,
612
621
(
2010
).
50.
T.
Murugesan
,
R.
Vidjeapriya
, and
A.
Bahurudeen
,
Sugar Tech
22
,
885
895
(
2020
).
51.
F.
Hernández-Olivares
,
R. E.
Medina-Alvarado
,
X. E.
Burneo-Valdivieso
, and
A. R.
Zúñiga-Suárez
,
Construction and Building Materials
247
(
2020
).
52.
G. P.
Lyra
,
V.
Santos
,
B. C. D.
Santis
,
R. R.
Rivaben
,
C.
Fischer
,
E. M. D. J. A.
Pallone
, and
J. A.
Rossignolo
,
Construction and Building Materials
222
,
222
228
(
2019
).
53.
L.
Rodier
,
K.
Bilba
,
C.
Onésippe
, and
M. A.
Arsène
,
Industrial Crops and Products
141
(
2019
).
54.
P.
Turgut
and
H. M.
Algin
,
Building and Environment
42
,
3399
3403
(
2007
).
55.
S.
Mallakpour
,
F.
Sirous
, and
C. M.
Hussain
,
Advances in Colloid and Interface Science
295
(
2021
).
56.
J.-L.
Zheng
,
X.-F.
Zhu
,
Q.-X.
Guo
,
Q.
Zhu
, and
Shi
,
Waste Manag
26
(
2006
).
57.
H.
Gogoi
,
T.
Leiviska
,
E.
Heiderscheidt
,
H.
Postila
, and
J.
Tanskanen
,
Journal of environmental management
209
,
316
327
(
2018
).
58.
B.
Sadeghi
,
M.
Bouslik
, and
M. R.
Shishehbore
,
Journal of the Iranian Chemical Society
12
,
1801
1808
(
2015
).
59.
I. O.
Ohijeagbon
,
A. A.
Adeleke
,
V. T.
Mustapha
,
J. A.
Olorunmaiye
,
I. P.
Okokpujie
, and
P. P.
Ikubanni
,
2020
.
60.
A. A.
Raheem
,
B. S.
Olasunkanmi
, and
C. S.
Folorunso
,
2012
.
61.
J.
Giancaspro
,
C.
Papakonstantinou
, and
P.
Balaguru
,
2008
.
62.
D.
Dai
and
M.
Fan
,
Industrial Crops and Products
74
,
417
424
(
2015
).
63.
N.
Petchwattana
and
S.
Covavisaruch
,
Journal of Bionic Engineering
11
,
630
637
(
2014
).
64.
A.
Ibáñez-García
,
A.
Martínez-García
, and
S.
Ferrándiz-Bou
,
Polymers
13
(
2021
).
65.
A.
Soroudi
and
I.
Jakubowicz
,
European Polymer Journal
49
,
2839
2858
(
2013
).
66.
I.
Pillin
,
N.
Montrelay
,
A.
Bourmaud
, and
Y.
Grohens
,
2008
.
67.
M.
Zenkiewicz
,
J.
Richert
,
P.
Rytlewski
,
K.
Moraczewski
,
M.
Stepczyńska
, and
T.
Karasiewicz
,
Polymer Testing-POLYM TEST
28
,
412
418
(
2009
).
68.
A.
Agüero
,
M. D. C.
Morcillo
,
L.
Quiles-Carrillo
,
R.
Balart
,
T.
Boronat
,
D.
Lascano
,
S.
Torres-Giner
, and
O.
Fenollar
,
Polymers
11
(
2019
).
69.
F.
Paolo
,
L.
Mantia
,
L.
Botta
,
M. C.
Mistretta
,
D.
Fiore
,
A.
Titone
, and V,
Polymers
12
(
2020
).
70.
A.
Panamgama
,
L.
Peramune
, and P,
International journal of biological macromolecules
113
,
1149
1157
(
2018
).
71.
R. A.
Ilyas
,
S. M.
Sapuan
,
M. M.
Harussani
,
M.
Hakimi
,
M.
Haziq
,
M.
Atikah
,
M.
Asyraf
,
M. R.
Ishak
,
M. R.
Razman
,
N. M.
Nurazzi
,
M.
Norrrahim
,
H.
Abral
, and
M.
Asrofi
,
Polylactic Acid (PLA) Biocomposite: Processing, Additive Manufacturing and Advanced Applications
13
(
2021
).
This content is only available via PDF.
You do not currently have access to this content.