Titanium Alloy Grade 5 (Ti6Al4V) is a strong, lightweight, corrosion-resistant, and highly recommended material for various Aerospace components. The machining efficiency during milling is poor due to a lack of proper cooling and lubrication. Also, Ti6Al4V’s sensitive metallurgy will affect the Material Removal Rate and Tool wear. The selection of shearing process parameters and proper cooling method is a crucial success in machining Ti6Al4V. The article explains the experimental investigation of open pocket milling under various cooling methods and shearing parameters through the Taguchi Design of Experiments. The L9 orthogonal array combines cutting speed, feed, Depth of Cut, and Cooling methods in a systematic way. The investigation was conducted through Cavity milling Computer-Aided Machining strategy with PVD-TiN coated insert. The experimental results wear measured in terms of Average Surface Roughness, Flank, and Crater Wear. Investigation proves that Nano Hybrid Flood Coolant + Cryogenic Air releases adequate lubrication and cooling. Consecutively reduction in the cutting tool wear is measured by scanning electron microscopy. The effective combination of process parameters viz. cutting speed=60 m/min, feed rate=0.19 mm/rev, axial depth of cut=0.35 mm under Nano Hybrid Flood Coolant + Cryogenic Air is delving by Grey Relational Approach.

1.
A.
Pramanik
,
2014
, “
Problems and solutions in machining of titanium alloys
,”
The International Journal of Advanced Manufacturing Technology
, Vol.
70
, pp.
919
928
.
2.
S.
Sharma
and
A.
Meena
,
2020
, “
Microstructure attributes and tool wear mechanisms during high-speed machining of Ti-6Al-4V
,”
Journal of Manufacturing Processes
, Vol.
50
, pp.
345
365
.
3.
G.
Liu
,
S.
Shah
, and
T.
Özel
,
2019
, “
Material Ductile Failure-Based Finite Element Simulations of Chip Serration in Orthogonal Cutting of Titanium Alloy Ti-6Al-4V
,”
Journal of Manufacturing Science and Engineering, Transactions of the ASME
, Vol.
141
, pp.
1
24
.
4.
I.
Shyha
,
S.
Gariani
,
M.A.
El-Sayed
,
D.
Huo
,
M.
Ti-al-v
,
I.
Shyha
,
S.
Gariani
,
M.A.
El-Sayed
, and
D.
Huo
,
2018
, “
Analysis of microstructure and chip formation when machining Ti-6Al-4V
,”
Metals
, Vol.
8
, pp.
1
20
.
5.
M.
Motyka
,
K.
Kubiak
,
J.
Sieniawski
, and
W.
Ziaja
,
2014
, “
Phase Transformations and Characterization of α+β Titanium Alloys
,”
Comprehensive Materials Processing
, Vol.
2
, pp.
7
36
.
6.
S.
Pervaiz
,
A.
Rashid
,
I.
Deiab
, and
M.
Nicolescu
,
2014
, “
Influence of Tool Materials on Machinability of Titanium-and Nickel-Based Alloys: A Review
,”
Materials and Manufacturing Processes
, Vol.
29
, pp.
219
252
.
7.
P.
Nieslony
,
W.
Grzesik
,
M.
Bartoszuk
, and
W.
Habrat
,
2016
, “
Analysis of mechanical characteristics of face milling process of ti6al4v alloy using experimental and simulation data
,”
Journal of Machine Engineering
, Vol.
16
, pp.
58
66
.
8.
G.S.
Goindi
and
P.
Sarkar
,
2017
, “
Dry machining: A step towards sustainable machining-Challenges and future directions
,”
Journal of Cleaner Production
, Vol.
165
, pp.
1557
1571
.
9.
M.
Nouari
and
H.
Makich
,
2014
, “
On the Physics of Machining Titanium Alloys: Interactions between Cutting Parameters, Microstructure and Tool Wear
,”
Metals
, Vol.
4
, pp.
335
358
.
10.
A.
Polishetty
,
G.
Littlefair
, and
K. Praveen
Kumar
,
2014
, “
Machinability Assessment of Titanium Alloy Ti-6Al-4V for Biomedical Applications
,”
Advanced Materials Research
, Vol.
941-944
, pp.
1985
1990
.
11.
K.
Gupta
,
R.F.
Laubscher
,
M.E.
Part
, and
E.
Manufacture
,
2017
, “
Sustainable machining of titanium alloys: A critical review
,”
Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture
, Vol.
231
, pp.
2543
2560
.
12.
S.
Raghavendra
,
P.S.
Sathyanarayana
, S. S,
T.
Vs
, and
M.
Kn
,
2020
, “
High speed machining of titanium Ti 6Al4V alloy components: study and optimisation of cutting parameters using RSM
,”
Advances in Materials and Processing Technologies
, Vol.
00
, pp.
1
14
.
13.
D.
Ulutan
,
2020
, “
True variable-depth milling
,”
Procedia Manufacturing
, Vol.
48
, pp.
593
597
.
14.
M.
Luo
,
J.
Wang
,
B.
Wu
, and
D.
Zhang
,
2017
, “
Effects of cutting parameters on tool insert wear in end milling of titanium alloy Ti6Al4V
,”
Chinese Journal of Mechanical Engineering
, Vol.
30
, pp.
53
59
.
15.
S.
Vijay
and
V.
Krishnaraj
,
2013
, “
Machining Parameters Optimization in End Milling of Ti-6Al-4V
,”
Procedia Engineering
, Vol.
64
, pp.
1079
1088
.
16.
K.S.
Sangwan
,
S.
Saxena
, and
G.
Kant
,
2015
, “
Optimization of machining parameters to minimize surface roughness using integrated ANN-GA approach
,”
Procedia CIRP
, Vol.
29
, pp.
305
310
.
17.
A.
Li
,
J.
Zhao
, and
G.
Hou
,
2017
, “
Effect of cutting speed on chip formation and wear mechanisms of coated carbide tools when ultra-high-speed face milling titanium alloy Ti-6Al-4V
,”
Advances in Mechanical Engineering
, Vol.
9
, pp.
168781401771370
.
18.
G.A.
Oosthuizen
,
K.
Nunco
,
P.J.T.
Conradie
, and
D.M.
Dimitrov
,
2016
, “
The effect of cutting parameters on surface integrity in milling TI6AL4V
,”
South African Journal of Industrial Engineering
, Vol.
27
, pp.
115
123
.
19.
A.S.
Patil
,
V.K.
Sunnapwar
,
K.S.
Bhole
, and
Y.S.
More
,
2022
, “
Experimental investigation and fuzzy TOPSIS optimisation of Ti6Al4V finish milling
,”
Advances in Materials and Processing Technologies
, Vol.
8
, pp.
3706
3729
.
20.
A.K.
Sharma
,
A.K.
Tiwari
, and
A.R.
Dixit
,
2015
, “
Progress of Nanofluid Application in Machining: A Review
,”
Materials and Manufacturing Processes
, Vol.
30
, pp.
813
828
.
21.
A.K.
Sharma
,
A.K.
Tiwari
, and
A.R.
Dixit
,
2016
, “
Effects of Minimum Quantity Lubrication (MQL) in machining processes using conventional and nanofluid based cutting fluids: A comprehensive review
,”
Journal of Cleaner Production
, Vol.
127
, pp.
1
18
.
22.
S.
Patil
,
S.
Jadhav
,
S.
Kekade
,
A.
Supare
,
A.
Powar
, and
R.K.P.
Singh
,
2016
, “
The Influence of Cutting Heat on the Surface Integrity during Machining of Titanium Alloy Ti6Al4V
,”
Procedia Manufacturing
, Vol.
5
, pp.
857
869
.
23.
G.
Li
,
S.
Yi
,
N.
Li
,
W.
Pan
,
C.
Wen
, and
S.
Ding
,
2019
, “
Quantitative analysis of cooling and lubricating effects of graphene oxide nanofluids in machining titanium alloy Ti6Al4V
,”
Journal of Materials Processing Technology
, Vol.
271
, pp.
584
598
.
24.
M.F.
Zakaria
,
M.A.
Suhaimi
,
S.
Sharif
,
G.D.
Yang
,
M.S.
Shaharum
,
M.K.M.
Kamal
, and
K.
Zakaria
,
2019
, “
The application of cold air and nano-MQL as cooling strategy in high speed milling of titanium alloy Ti-6Al-4V: A review
,”
AIP Conference Proceedings
, Vol.
2129
, pp.
020175
-
1
-020175-9.
25.
V.F.C.
Sousa
and
F.J.G.
Silva
,
2020
, “
Recent Advances on Coated Milling Tool Technology—A Comprehensive Review
,”
Coatings
, Vol.
10
, pp.
235
.
26.
D.
Arulkirubakaran
and
V.
Senthilkumar
,
2017
, “
Performance of TiN and TiAlN coated micro-grooved tools during machining of Ti-6Al-4V alloy
,”
International Journal of Refractory Metals and Hard Materials
, Vol.
62
, pp.
47
57
.
27.
K. Nimel Sworna
Ross
and
M.
Ganesh
,
2019
, “
Performance Analysis of Machining Ti-6Al-4V Under Cryogenic CO2 Using PVD-TiN Coated Tool
,”
Journal of Failure Analysis and Prevention
, Vol.
19
, pp.
821
831
.
28.
S.
Sun
,
M.
Brandt
, and
M.S.
Dargusch
,
2017
, “
Effect of tool wear on chip formation during dry machining of Ti-6Al-4V alloy, part 1: Effect of gradual tool wear evolution
,”
Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture
, Vol.
231
, pp.
1559
1574
.
29.
X.
Cui
,
C.
Li
,
W.
Ding
,
Y.
Chen
,
C.
Mao
,
X.
Xu
,
B.
Liu
,
D.
Wang
,
H.N.
Li
,
Y.
Zhang
,
Z.
Said
,
S.
Debnath
,
M.
Jamil
,
H.M.
Ali
, and
S.
Sharma
,
2021
, “
Minimum quantity lubrication machining of aeronautical materials using carbon group nanolubricant: From mechanisms to application
,”
Chinese Journal of Aeronautics
, pp.
1
29
.
30.
M.
Mia
,
M.K.
Gupta
,
J.A.
Lozano
,
D.
Carou
,
D.Y.
Pimenov
,
G.
Królczyk
,
A.M.
Khan
, and
N.R.
Dhar
,
2019
, “
Multi-objective optimization and life cycle assessment of eco-friendly cryogenic N2 assisted turning of Ti-6Al-4V
,”
Journal of Cleaner Production
, Vol.
210
, pp.
121
133
.
31.
J.L.
Deng
,
1989
, “
Introduction to Grey Systems Theory
,”
The Journal of Grey System
, Vol.
1
, pp.
1
18
.
32.
N.M.
Mehat
,
S.
Kamaruddin
, and
A.R.
Othman
,
2013
, “
Modeling and Analysis of Injection Moulding Process Parameters for Plastic Gear Industry Application
,”
ISRN Industrial Engineering
, Vol.
2013
, pp.
1
10
.
33.
R.S.
Pawade
and
S.B.
Bhosale
,
2013
, “
Grey Relational Parameter Optimization in Ultrasonic Machining of Ceramic Composite (Al2O3/Zro2)
,”
Journal of the Association of Engineers, India
, Vol.
83
, pp.
1
18
.
34.
P.
Wang
,
P.
Meng
,
J.-Y.
Zhai
, and
Z.-Q.
Zhu
,
2013
, “
A hybrid method using experiment design and grey relational analysis for multiple criteria decision making problems
,”
Knowledge-Based Systems
, Vol.
53
, pp.
100
107
.
35.
J.
Santhakumar
,
U.M.
Iqbal
, and
M.
Prakash
,
2018
, “
Optimization of one direction tool path orientation for pocket milling of Ti-6Al-4V using taguchi based grey relational analysis
,”
IOP Conference Series: Materials Science and Engineering
, Vol.
402
, pp.
1
16
.
36.
A.
Perumal
,
C.
Kailasanathan
,
B.
Stalin
,
S. Suresh
Kumar
,
P.R.
Rajkumar
,
T.
Gangadharan
,
G.
Venkatesan
,
N.
Nagaprasad
,
V.
Dhinakaran
, and
R.
Krishnaraj
,
2022
, “
Multiresponse Optimization of Wire Electrical Discharge Machining Parameters for Ti-6Al-2Sn-4Zr-2Mo (α-β) Alloy Using Taguchi-Grey Relational Approach
,”
Advances in Materials Science and Engineering
, Vol.
2022
, pp.
1
13
.
37.
M.
Bartoszuk
and
A.
Nosol
,
2016
, “
Investigation of initial wear period of coated carbide cutting tools
,”
Mechanik
, pp.
1374
1375
.
38.
A.S.
Patil
,
V.K.
Sunnapwar
,
K. S.
Bhole
,
M.P.
Ray
, and
Y.S.
More
,
2022
, “
Effective cooling methods for Ti6Al4V CNC milling: a review
,”
Advances in Materials and Processing Technologies
, Vol.
7
, pp.
1
51
.
39.
A.
Gök
,
K.
Gök
,
M.B.
Bilgin
, and
M.A.
Alkan
,
2017
, “
Effects of cutting parameters and tool-path strategies on tool acceleration in ball-end milling
,”
Materiali in Tehnologije
, Vol.
51
, pp.
957
965
.
40.
U.
Koklu
and
G.
Basmaci
,
2017
, “
Evaluation of tool path strategy and cooling condition effects on the cutting force and surface quality in micromilling operations
,”
Metals
, Vol.
7
(426), pp.
1
11
.
This content is only available via PDF.
You do not currently have access to this content.