It has been found that the accumulation of dust on photovoltaic panels can significantly reduce their output resulting in an increase in the cost of the electricity. There are several methods used to clean the solar PV panel. The PV cleaning system presented in this research paper is a straightforward alternative that addresses this issue effectively. This present work aimed to compare the time required for cleaning of solar pv panel system with manual and robotic technique. In the present study, an automated solar PV module cleaning system has been developed. The proposed designprovides a durable, dependable, and automated cleaning mechanism for solar power plants. The robotic cleaning system was found less time consuming compared to the manual cleaning of the solar PV panel. It is found to be very difficult for manual cleaning to clean solar plants of higher capacity. Depending upon the size of the solar PV panel, it is found to be difficult to clean all surface area of the solar PV panel at the time of manual cleaning. The robotic cleaning system for a solar PV panel is found to be very effective for the solar PV power plants of higher capacity and located at remote locations.

1.
Cai
,
S.
,
Bao
,
G.
,
Ma
,
X.
,
Wu
,
W.
,
Bian
,
G. B.
,
Rodrigues
,
J. J.
, &
de Albuquerque
,
V. H. C.
(
2019
).
Parametersoptimization of the dust absorbing structure for photovoltaic panel cleaning robot based on orthogonal experiment method
.
Journal of cleaner production
,
217
,
724
731
.
2.
Kawamoto
,
H.
, &
Shibata
,
T.
(
2015
).
Electrostatic cleaning system for removal of sand from solar panels
.
Journal of Electrostatics
,
73
,
65
70
.
3.
Al Shehri
,
A.
,
Parrott
,
B.
,
Carrasco
,
P.
,
Al Saiari
,
H.
, &
Taie
,
I.
(
2016
).
Impact of dust deposition and brush-based dry cleaning on glass transmittance for PV modules applications
.
Solar Energy
,
135
,
317
324
.
4.
Deb
,
D.
, &
Brahmbhatt
,
N. L.
(
2018
).
Review of yield increase of solar panels through soiling prevention, anda proposed water-free automated cleaning solution
.
Renewable and Sustainable Energy Reviews
,
82
,
3306
3313
.
5.
Moharram
,
K. A.
,
Abd-Elhady
,
M. S.
,
Kandil
,
H. A.
, &
El-Sherif
,
H.
(
2013
).
Influence of cleaning using water and surfactants on the performance of photovoltaic panels
.
Energy Conversion and Management
,
68
,
266
272
.
6.
Gómez-Amo
,
J. L.
,
Freile-Aranda
,
M. D.
,
Camarasa
,
J.
,
Estellés
,
V.
,
Utrillas
,
M. P.
, &
Martínez-Lozano
,
J. A.
(
2019
).
Empirical estimates of the radiative impact of an unusually extreme dust and wildfire episode on the performance of a photovoltaic plant in Western Mediterranean
.
Applied Energy
,
235
,
1226
1234
.
7.
Al-Housani
,
M.
,
Bicer
,
Y.
, &
Koç
,
M.
(
2019
).
Experimental investigations on PV cleaning of large-scale solar power plants in desert climates: Comparison of cleaning techniques for drone retrofitting
.
Energy Conversion and Management
,
185
,
800
815
.
8.
Gholami
,
H.
,
Khalilnejad
,
A.
, &
Gharehpetian
,
G. B.
(
2015
).
Electrothermal performance and environmental effects of optimal photovoltaic-thermal system
.
Energy conversion and management
,
95
,
326
333
.
9.
Kalogirou
,
S. A.
, &
Tripanagnostopoulos
,
Y.
(
2006
).
Hybrid PV/T solar systems for domestic hot water and electricity production
.
Energy conversion and management
,
47
(
18-19
),
3368
3382
.
10.
Trapani
,
K.
, &
Millar
,
D. L.
(
2013
).
Proposing offshore photovoltaic (PV) technology to the energy mix of the Maltese islands
.
Energy Conversion and Management
,
67
,
18
26
.
11.
Sahu
,
A.
,
Yadav
,
N.
, &
Sudhakar
,
K.
(
2016
).
Floating photovoltaic power plant: A review
.
Renewable and sustainable energy reviews
,
66
,
815
824
.
12.
Eltayeb
,
W.
,
Yedukondalu
,
G.
,
Srinath
,
A.
(
2020
).
Design and Development of a Cleaning Robot for Solar Panels with Sun Tracking
.
Journal of Green Engineering
,
10
,
9517
9532
.
13.
Noh
,
F. H. M.
,
Yaakub
,
M. F.
,
Nordin
,
I. N. A. M.
,
Sahari
,
N.
,
Zambri
,
N. A.
,
Yi
,
S. S.
,
Saibon
,
M. S. M.
(
2020
).
Development of solar panel cleaning robot using Arduino
.
Indonesian J. Electr. Eng. Comput. Sci
,
19
,
1245
.
14.
Khadka
,
N.
,
Bista
,
A.
,
Adhikari
,
B.
,
Shrestha
,
A.
,
Bista
,
D.
,
Adhikary
,
B.
(
2020
).
Current practices of solar photovoltaic panel cleaning system and future prospects of machine learning implementation
.
IEEE Access
,
8
,
135948
135962
.
15.
Chailoet
,
K.
,
Pengwang
,
E.
(
2019
, October). Assembly of modular robot for cleaning various length of solar panels.
In IOP Conference Series: Materials Science and Engineering
(Vol.
639
, No.
1
, p.
012014
).
IOP Publishing
.
16.
Akyazi
,
Ö.
,
Şahin
,
E.
,
Özsoy
,
T.
, &
Algül
,
M.
(
2019
).
A solar panel cleaning robot design and application
.
Avrupa Bilim ve Teknoloji Dergisi
,
343
348
.
17.
Bhole
,
K. S.
, &
Janbandhu
,
M.
(
2018
).
Design and development of double spiral shaped flexural feed stage for micro-drilling workstation
.
Materials Today: Proceedings
,
5
(
11
),
25468
25476
.
18.
Kanedkhedkar
,
P.
,
Nagrale
,
M.
, &
Vajir
,
A.
(
2022
).
Design and Simulation of Solar Floats Using LDPE Material
.
Journal of Algebraic Statistics
,
13
(
3
),
3473
3480
.
19.
Nagrale
,
M. S.
, &
Mastud
,
S. A.
(
2021
).
An experimental study to investigate the effect of solid, single-channel and multichannel electrodes in micro-electrodischarge drilling process
.
Journal of the Brazilian Society of Mechanical Sciences and Engineering
,
43
(
2
),
88
.
This content is only available via PDF.
You do not currently have access to this content.