The Programme for International Students Assessment (PISA) is a periodic survey program to evaluate the quality of a country’s education based on student literacy development. The results of the 2018 PISA survey showed that Indonesia occupied the position of 72 out of 79 countries. It shows that the quality of education in Indonesia is still low. This study aims to analyze the factors that affect the reading literacy score of PISA Indonesia quantitatively, which until now is still very rarely done. The model used to analyze PISA reading literacy scores and schools as a random effect is linear mixed models (LMM). The feasibility of the model is reviewed based on the model’s goodness criteria, namely the estimation of random effect variance, parameter significance tests, and model diagnostics. The results show that the significant factors influencing PISA are reading literacy scores, including education level, father’s education, internet access at home, dictionary at home, and many (TVs, cellphones, computers, e-book tabs, and books at home). Behavior skipping school and being late in coming to school, not listening to the teacher’s explanation, the age of entering kindergarten and elementary school, and staying in class during elementary school.

1.
I.
Pratiwi
,
J. Pendidik. dan Kebud.
4
(
1
), p.
51
(
2019
).
2.
OECD
.
Sampling in PISA
(March
2016
), pp.
1
14
.
3.
OECD
.
PISA 2018 Assessment and Analytical Framework
(
2019
), p.
308
.
4.
J.
Mo
,
How does PISA define and measure reading literacy?
(
PISA Focus
,
2019
), no.
101
.
5.
OECD
.
PISA 2018 Result.
Vol.
IV
(
2018
).
6.
P.
McCullagh
and
J.A. Nelder
FRS
,
Generalized Linear Models
(
Chapman and Hall
,
London
,
1983
).
7.
R.
Pakpahan
,
Jurnal Pendidikan dan Kebudayaan
1
(
3
), pp.
331
348
(
2012
).
8.
V.M.
Santi
,
K.A.
Notodiputro
,
B.
Sartono
,
J. Phys. Conf. Ser.
1402
(
7
), p.
077096
(
2019
).
9.
V.M.
Santi
,
K.A.
Notodiputro
,
B.
Sartono
,
W.
Rahyu
,
J. Phys. Conf. Ser.
1869
(
1
), p.
012140
(
2021
).
10.
V.M.
Santi
,
K.A.
Notodiputro
,
B.
Sartono
,
BAREKENG J. Ilmu Mat. dan Terap.
16
(
2
), pp.
607
614
(
2022
).
11.
S.
Breakspear
,
Cent. Strateg. Educ. Semin. Ser.
240
, (
2014
), p.
16
.
12.
A.
Agresti
,
Categorical Data Analysis
, 2nd ed. Vol.
13
, (
John Wiley & Sons
,
New York
,
2002
), p.
451
.
13.
J.
Faraway
,
Texts in Statistical Science: Linear Models with R. Taylor and Francis Group.
2009
.
1
221
p.
14.
J.
Zahro
,
R.E.
Caraka
,
R.
Herliansyah
,
Aplikasi generalized linear model pada R.
2018
.
15.
J.J.
Faraway
,
Extending the Linear Model with R. Second Edi
(
Taylor & Francis Grup
,
Boca Raton
,
2016
).
16.
H.
Chen
,
J.K.
Lindsey
,
Technometrics
40
(
2
), p.
156
(
1998
).
17.
A.J.
Dobson
,
A.G.
Barnett
,
An Introduction to Generalized Linear Models. Third Edit. Multilevel Modeling Using R
(
Boca Raton
,
Taylor & Francis Grup
,
2008
), pp.
138
155
.
18.
G.
Dunteman
,
M-HR.
Ho
.
An Introduction to Generalized Linear Models (Quantitative Applications in the Social Sciences)
(
Sage Publications
,
Thousand Oaks
,
2006
), p.
86
.
19.
J.
Fox
,
Stat. Med
29
(
25
), pp.
2643
2655
(
2010
).
20.
B.A.
Coull
,
A.
Agresti
,
Biometrics
56
(
1
), pp.
73
80
(
2000
).
21.
H.D.
Bondell
,
A.
Krishna
,
S.K.
Ghosh
,
Biometrics
66
(
4
), pp.
1069
77
(
2010
).
22.
F.N.
Gumedze
,
T.T.
Dunne
,
Linear Algebra Appl.
435
(
8
), pp.
1920
44
(
2011
).
23.
E.
Jarosova
,
Estimation with the linear mixed effects model.
2010
;(January).
24.
SAS Institute Inc
.
Introduction to Mixed Modeling Procedures. SAS/STAT 92 User’s Guid
.
2011
;Chapter 6:
116
25
.
25.
C.E.
McCulloch
,
S.R.
Searle
,
Generalized, Linear and, Mixed Models
.
New York
:
John Wiley and Sons, Inc
.;
2001
.
26.
C.
Manning
,
Generalized Linear mixed modelss (illustrated with R on Bresnan et al.’s datives data)
.
2007
;(November):
1
40
.
27.
G.
Molenberghs
,
D.
Renard
,
G.
Verbeke
,
A Review of Generalized Linear mixed modelss.
2002
;
11336
.
28.
Gad
AM
,
El-Zayat
NI
.
Fitting Multivariate Linear mixed models for Multiple Outcomes Longitudinal Data with Non-ignorable Dropout
.
Int J Probab Stat.
2018
;
7
(
4
):
97
105
.
29.
J.
Jiang
,
T.
Nguyen
,
Linear and Generalized Linear mixed modelss and Their Applications
. Vol.
50
,
Technometrics. Springer
;
2021
.
This content is only available via PDF.
You do not currently have access to this content.