Rolling resistance is the most basic component of force counteracting movement of a vehicle equipped with a wheel and axle. This value is particularly important in the case of systems that are powered by muscle effort, such as for example a wheelchair. Modelling and analysis of the motion of such a vehicle requires knowledge of rolling resistance. There are a number of ways to measure the values essential for calculation of rolling friction, although individual methods have specific advantages and disadvantages. Therefore, a research method was developed that allows to determine the value of resistance to motion in real conditions - without the need to disassemble the wheels from the vehicle. The aim of the work was to determine the resistance to movement of wheels used in, inter alia, wheelchairs and to evaluate the research method developed for this end. The article contains a description of the research methodology and the results of the determined rolling resistance coefficient values. In relation to the previously developed research methods, an improvement was introduced, which allowed to reduce the impact of the inertia of the moving system on the test results. This is an important issue, especially for wheels with low load capacity, which are unable to withstand a considerable value of vertical force. The results presented in the study are a continuation of the research related to the analysis of wheelchair’s rolling resistance.

1.
Ł.
Warguła
,
M.
Kukla
and
B.
Wieczorek
,
A device for measuring the rolling resistance force of objects equipped with running gear (original title in Polish: Urządzenie do pomiaru siły oporów toczenia obiektów wyposażonych w układ jezdny) patent application number P.438203 Pat/2312 date of the patent application
(18.06.2021).
2.
Ł.
Warguła
, B.
Wieczorek
,
K. J. Walus
and
M.
Kukla
,
Device for measuring of the rolling re-sistance force of the objects equipped with the trolley system (original title in Polish
:
Urządzenie do pomiaru siły oporów toczenia obiektów wyposażonych w układ jezdny) patent number PL235796B1 date of patent application
(02.02.2018).
3.
Ł.
Warguła
,
M.
Kukla
,
V.
Yurchenko
and
A.
Kukesheva
, “
Analysis of the usability of rolling resistance measurement methods to study the mechanisms of some wheelchairs
”.
IOP Conf. Ser.: Mater. Sci. Eng.
1199
012063
(
2021
).
4.
Ł.
Warguła
,
B.
Wieczorek
,
M.
Kukla
, “
The determination of the rolling resistance coefficient of objects equipped with the wheels and suspension system – results of preliminary tests
”.
MATEC Web of Conf.
254
,
01005
(
2019
).
5.
M. D.
Fenre
, “
Rolling Resistance Measurements on Cycleways Using an Instrumented Bicycle
”,
J. Cold Reg. Eng.
35
(
2
),
04021001
(
2021
).
6.
J. J. C.
Chua
,
F. K.
Fuss
and
A.
Subic
,
“Rolling friction of a rugby wheelchair”
.
Proc. Eng.
2
(
2
),
3071
3076
(
2010
).
7.
M. D.
Hoffman
,
G. Y.
Millet
,
A. Z.
Hoch
and
R. B.
Candau
, “
Assessment of wheelchair drag resistance using a coasting deceleration technique
”.
Am. J. Phys. Med. Rehabil.
82
,
880
889
(
2003
).
8.
F. K.
Fuss
, “
Influence of mass on the speed of wheelchair racing
”.
Sports Eng.
12
,
41
53
(
2009
).
9.
J. J. C.
Chua
,
F. K.
Fuss
and
A.
Subic
, “
Non-linear rolling friction of a tyre-caster system: analysis of a rugby wheelchair
”.
Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci.
225
(
4
),
1015
1020
(
2011
).
10.
M.
Kukla
,
Ł.
Warguła
and
A.
Biszczanik
, “
Determining the Coefficient of Friction of Wood-Based Materials for Furniture Panels in the Aspect of Modelling Their Shredding Process
”.
Wood Res.
66
(
5
),
789
805
(
2021
).
11.
Ł.
Warguła
,
D.
Wojtkowiak
,
M.
Kukla
and
K.
Talaśka
, “
Symmetric Nature of Stress Distribution in the Elastic-Plastic Range of Pinus L. Pine Wood Samples Determined Experimentally and Using the Finite Element Method (FEM
)”.
Symmetry
13
(
1
),
39
(
2021
).
12.
J.
Górecki
,
K.
Talaśka
,
K.
Wałęsa
,
D.
Wilczyński
and
D.
Wojtkowiak
, “
Mathematical Model Describing the Influence of Geometrical Parameters of Multichannel Dies on the Limit Force of Dry Ice Extrusion Process
”.
Materials
13
(
15
),
3317
(
2020
).
13.
J.
Górecki
,
I.
Malujda
,
D.
Wilczyński
and
D.
Wojtkowiak
, “
Influence of the face surface shape of the piston on the limit value of compaction stress in the process of dry ice agglomeration
”.
MATEC Web of Conf.
254
,
06001
(
2019
).
14.
J.
Górecki
,
I.
Malujda
and
K.
Talaśka
, “
Investigation of internal friction of agglomerated dry ice
”.
Proc. Eng.
,
136
,
275
279
(
2015
).
15.
D.
Wilczyński
,
M.
Berdychowski
,
D.
Wojtkowiak
,
J.
Górecki
and
K.
Wałęsa
, “
Experimental and numerical tests of the compaction process of loose material in the form of sawdust
”.
MATEC Web of Conf.
254
,
02042
(
2019
).
16.
D.
Wilczyński
,
M.
Berdychowski
,
K.
Talaśka
and
D.
Wojtkowiak
, “
Experimental and numerical analysis of the effect of compaction conditions on briquette properties
”.
Fuel
288
,
119613
(
2021
).
17.
M.
Berdychowski
,
K.
Talaśka
and
D.
Wilczyńksi
, “
Evaluation of the possibility of using the Drucker-Prager-Cap model in simulations of the densification process of shredded natural materials
”.
MATEC Web of Conf.
254
,
02018
(
2019
).
18.
D.
Wojtkowiak
,
K.
Talaśka
,
D.
Wilczyński
,
J.
Górecki
and
K.
Wałęsa
, “
A Coupled Eulerian-Lagrangian Simulation and Tool Optimization for Belt Punching Process with a Single Cutting Edge
”.
Materials
14
(
18
),
5406
(
2021
).
19.
D.
Wojtkowiak
,
K.
Talaśka
,
D.
Wilczyński
,
J.
Górecki
and
K.
Wałęsa
, “
Determining the Power Consumption of the Automatic Device for Belt Perforation Based on the Dynamic Model
”.
Energies
14
(
2
),
317
(
2021
).
20.
D.
Wilczyński
,
I.
Malujda
,
J.
Górecki
and
G.
Domek
, “
Experimental research on the process of cutting transport belts
”.
MATEC Web of Conf.
254
,
05014
(
2019
).
21.
P. J.
Blau
, “
The significance and use of the friction coefficient
”.
Trib. Inter.
34
(
9
),
585
591
(
2001
).
22.
B.
Pałasz
,
K. J.
Walus
and
Ł.
Warguła
, “
The determination of the rolling resistance coefficient of a passenger vehicle with the use of roller test bench method
”.
MATEC Web of Conf.
254
,
04007
(
2019
).
23.
B.
Pałasz
,
K. J.
Waluś
and
Ł.
Warguła
, “
The determination of the rolling resistance coefficient of a passenger vehicle with the use of selected road tests methods
”.
MATEC Web of Conf.
254
,
04006
(
2019
).
24.
Ł.
Warguła
,
B.
Wieczorek
and
M.
Kukla
, “
The determination of the rolling resistance coefficient of objects equipped with the wheels and suspension system – results of preliminary tests
”.
MATEC Web of Conf.
254
,
01005
(
2019
).
25.
TENTE data sweet
: http://roti-rotile.com/produse/2470pjo125r05-28.pdf (access: 08.06.2018)
26.
EN 12530 – Castors and wheels. Castors and wheels for manually propelled institutional applications.
27.
Ł.
Warguła
,
M.
Kukla
and
B.
Wieczorek
, “
The impact of wheelchairs driving support systems on the rolling resistance coefficient
”.
IOP Conf. Ser.: Mater. Sci. Eng.
776
,
012076
(
2020
).
This content is only available via PDF.
You do not currently have access to this content.