Wood waste can be converted into valuable other materials/bioproducts. Lignocellulosic waste such as wood is essential in functional activated biocarbon raw material. This study aimed to determine the potential of wood waste as raw material for activated biocarbon containing Ni metal as a catalyst. The method started with the carbonization at a temperature of 400°C then activated using 10% H3PQ4 followed by heating at 800°C. The Nickel modification is conducted using the impregnation method. The proximate and acidity product was then analyzed, crystallinity properties using XRD, the functional group using FTIR, morphological properties using SEM, and surface area using SAA. The Ni-biocarbon applicated to the hydrocracking reaction of Cerbera manghas with Hz addition; the ratio of catalyst and feedstock is 1:100 at a temperature of 425°C for 2,5 h reaction time. The product was then analyzed using GCMS. The results showed the moisture, ash, volatile matter, and fixed carbon content were 6.56%, 7.33%, 30.67%, and 62%. The adsorption capacity of the Ni-impregnated biocarbon for iodine, pyridine, and ammonia was 714.41 m2/g, 2.8051 mmol/gram, and 8.8752 mmol/g, respectively. The functional groups on the catalyst’s surface consisted of OH, C-H, C-O, and C-C with an irregular and porous surface morphology. The crystallinity and surface area of the Ni-impregnated biocarbon was 52.33% and 870, 662 m2/g, respectively. The hydrocracking product contained alcohol, ketones, ester, carboxylic acid, and aliphatic hydrocarbon. The main desirable compound achieved in this research was the aliphatic hydrocarbon compound of 42% which mainly contained dodecane (27.58%).

1.
Hasan
,
M. M.
,
Wang
,
X. S.
,
Mourant
,
D.
,
Gunawan
,
R.
,
Yu
,
C.
,
Hu
,
X.
, …
Li
,
C. Z.
Grinding pyrolysis of Mallee wood: Effects of pyrolysis conditions on the yields of bio-oil and biochar
.
Fuel Processing Technology
167
,
215
220
(
2017
). .
2.
Luo
,
H.
,
Bao
,
L.
,
Kong
,
L.
, and
Sun
,
Y.
Low temperature microwave-assisted pyrolysis of wood sawdust for phenolic rich compounds: Kinetics and dielectric properties analysis
.
Bioresource Technology
238
,
109
115
(
2017
). .
3.
Simangunsong
,
B. C. H.
, et al.
Potential Forest Biomass Resource as Feedstock for Bioenergy and Its Economic Value in Indonesia
.
Forest Policy and Economics
81
,
10
17
(
2017
). .
4.
Hita
,
I.
,
Cordero-Lanzac
,
T.
,
Gallardo
,
A.
,
Arandes
,
J. M.
,
Rodriguez-Mirasol
,
J.
,
Bilbao
,
J.
, …
Castano
,
P.
Phosphorus-containing activated carbon as acid support in a bifunctional Pt-Pd catalyst for tire oil hydrocracking
,
Catalysis Communications
78
,
48
51
(
2016
). .
5.
Nata
,
I. F.
,
Putra
,
M. D.
,
Irawan
,
C.
, and
Lee
,
C. K.
Journal of Environmental Chemical Engineering
5
(
3
),
2171
2175
(
2017
). .
6.
Suhendra
,
D.
and
Gunawan
,
E. R.
Aktivator asam sulfat dan penggunaannya pada penjerapan ion tembaga ( II
).
Makara Sains
4
(
1
),
22
26
(
2010
).
7.
Cordero-Lanzac
,
T.
,
Hita
,
I.
,
Veloso
,
A.
,
Arandes
,
J.M.
,
Rodriguez-Mirasol
,
J.
,
Bilbao
,
J.
, …
Castano
,
P.
Characterization and controlled combustion of carbonaceous deactivating species deposited on an activated carbon-based catalyst
.
Chemical Engineering Journal
327
,
454
464
(
2017
). .
8.
Juarez
,
E. M.
,
Garcia
,
F. J. O.
, and
Hernandez
P. S.
Hydrocracking of vacuum residue by homogeneous catalysis
.
Fuel
135
,
51
54
(
2014
). .
9.
Hanaoka
,
T.
,
Miyazawa
,
T.
,
Shimura
,
K.
, and
Hirata
,
S.
Jet fuel synthesis from Fischer-Tropsch product under mild hydrocracking conditions using Pt-loaded catalysts
.
Chemical Engineering Journal
263
,
178
185
(
2015
)..
10.
Fuentes-Ordonez
,
E. G.
,
Salbidegoitia
,
J. A.
,
Gonzalez-Marcos
,
M. P.
, and
Gonzalez-Velasco
,
J. R.
Mechanism and kinetics in catalytic hydrocracking of polystyrene in solution
.
Polymer Degradation and Stability
124
,
51
59
(
2016
). .
11.
Regali
,
F.
,
Boutonnet
,
M.
, and
Jaras
,
S.
Hydrocracking of n-hexadecane on noble metal/silica-alumina catalysts
.
Catalysis Today
214
,
12
18
(
2013
). .
12.
Zaaba
,
N. F.
,
Ismail
,
H.
, and
Jaafar
,
M.
Recycled Polypropylene/ Peanut Shell Powder Composites: Pre­ Treatment ofLignin Using Alkaline
.
BioResources
11
(
2
),
3524
3537
(
2016
).
13.
Hanafi
,
S. A.
,
Elmelawy
,
M. S.
,
Shalaby
,
N. H.
,
El-Syed
,
H. A.
,
Eshaq
,
G.
, and
Mostafa
,
M. S.
Hydrocracking of waste chicken fat as a cost effective feedstock for renewable fuel production: A kinetic study
.
Egyptian Journal of Petroleum
25
(
4
),
531
537
(
2016
)..
14.
Majka
,
M.
,
Tomaszewicz
,
G.
, and
Mianowski
,
A.
Experimental study on the coal tar hydrocracking process over different catalysts
.
Journal of the Energy Institute June
,
1
13
(
2017
). .
15.
Kaewpengkrow
,
P.
,
Atong
,
D.
, and
Sricharoenchaikul
,
V.
Selective catalytic fast pyrolysis of Jatropha curcas residue with metal oxide impregnated activated carbon for upgrading bio-oil
.
International Journal of Hydrogen Energy
42
(
29
),
18397
18409
(
2017
). .
16.
Sari
,
F.
and
Abdurrokhman
,
I.
, and
Gunardi
,
I.
Pemanfaatan Bentonit dan Karbon Sebagai Support Katalis NiO-MgO pada Hidrogenasi Gliserol
.
Jumal Teknik Pomits
3
(
2
),
1
5
(
2014
).
17.
Pari
,
G.
,
Hastuti
,
N.
,
Darmawan
,
S.
, and
Efiyanti
,
L.
Karakteristik arang pinus sebagai bahan baku karbon
.
Prosiding Seminar Nasional XVIII MAPEKI
2015
,
169
176
(
2015
).
18.
Efiyanti
,
L.
and
Santi
,
D.
The influence of NiO and NiOMoO catalyst for hydrocracking of cashew nut shell liquid
.
Jumal Penelitian Hasil Rutan
34
(
3
),
189
197
(
2016
). .
19.
Hendra
,
D.
,
Gusti
,
R. E. P.
, and
Komarayati
,
S.
Pemanfaatan limbah tempurung kemiri sunan (Aleuriteus trisperma) sebagai bahan baku pada pembuatan arang aktif
.
Jumal Penelitian Hasil Rutan
32
(
4
),
271
282
(
2014
). .
20.
Yustinah
and
Hartini
.
Adsorbsi minyak goreng bekas menggunakan arang aktif dari sabut kelapa
.
Prosiding Seminar Nasional Teknik Kimia "Kejuangan" Pengembangan Teknologi Kimia untuk Pengolahan Sumber Daya Alam Indonesia
,
B05
-
1
-B05-5 (
2011
).
21.
Polii
,
F. F.
,
Pengaruh suhu dan lama aktifasi terhadap mutu arang aktif dari kayu kelapa,"
Jurnal lndustri Hasi I Perkebunan
12
(
2
),
21
28
(
2017
).
22.
Kurniawan
,
R.
,
Lutfi
,
M.
, and
Wahyunanto
,
A. N.
Karakterisasi Luas Permukaan Bet (Braunanear, Emmelt dan Teller) Karbon Aktif dari Tempurung Kelapa dan Tandan Kosong Kelapa Sawit dengan Aktivasi Asam Fosfat (HJPO4
).
Jumal Keteknikan Pertanian Tropis dan Biosistem
2
(
1
),
15
20
(
2014
).
23.
Rego de Vasconcelos
,
B.
,
Minh
,
D. P.
,
Lyczko
,
N.
,
Phan
,
T. S.
,
Sharrock
,
P.
, and
Nzihou
,
A.
Upgrading greenhouse gases (methane and carbon dioxide) into syngas using nickel-based catalysts
.
Fuel
226
(April),
195
203
(
2018
). .
24.
Zhang
,
T.
,
Li
,
W.
,
Xu
,
Z.
,
Liu
,
Q.
,
Ma
,
Q.
,
Jameel
,
H.
, …
Ma
,
L.
Catalytic conversion ofxylose and corn stalk into furfural over carbon solid acid catalyst in y-valerolactone
.
Bioresource Technoogy
209
,
108
114
(
2016
). .
25.
Triyono
,
Trisunaryanti
,
W.
,
Syoufian
,
A.
,
Wibawa
,
A. P.
,
E.
Suarsih
, and
Fatmawati
,
D. A.
Preparation of co, ni, and zn-based catalyst supported on mesoporous carbon for hydrocracking of pyrolyzed a­ cellulose
.
Rasayan Journal of Chemistry
14
(
3
),
1965
1971
(
2021
). .
26.
Zhao
,
J.
,
Zhou
,
C.
,
He
,
C.
,
Dai
,
Y.
,
Jia
,
X.
, and
Yang
,
Y.
Efficient dehydration of fructose to 5-hydroxymethylfurfural over sulfonated carbon sphere solid acid catalysts
.
Catalysis Today
264
,
123
130
(
2016
). .
27.
Darmawan
,
S.
Karbon nanoporous dari biomasa hutan melalui proses karbonisasi bertingkat: pirolisis, hidrotermal dan aktivasi
.
Dissertation
,
TPB University
,
Bogor
(
2014
)
28.
Ni
,
W.
,
Wang
,
B.
,
Cheng
,
J.
,
Li
,
X.
,
Guan
,
Q.
,
Gu
,
G.
, &
Huang
,
L.
Hierarchical foam of exposed ultrathin nickel nanosheets supported on chainlike Ni-nanowires and the derivative chalcogenide for enhanced pseudocapacitance
.
Analytical and Bioanalytical Chemistry i(2003)
,
946
951
(
2006
). .
29.
Mardhiah
,
H. H.
,
Ong
,
H. C.
,
Masjuki
,
H. H.
,
Lim
,
S.
, and
Pang
,
Y. L.
investigation of carbon-based solid acid catalyst from Jatropha curcas biomass in biodiesel production
.
Energy Conversion and Management
144
, I
0
17
(20 I 7), .
30.
Trisunaryanti
,
W.
,
Triyono
,
Armunanto
, R.,
Hastuti
,
L. P.
,
Ristiana
,
D. D.
, and
Ginting
,
R. V.
Hydrocracking of a-cellulose using Co, Ni, and Pd supported on mordenite catalysts
.
Indonesian Journal of Chemistry
18
(
1
),
166
172
(
2018
). .
31.
Fauzi
,
A. A.
,
Prasetyo
,
I.
,
Rochmadi
, and
Ariyanto
,
T.
Karbon mesopori dari pirolisis polimer sintetis dan aplikasinya untuk penjerapan gas rumah kaca
.
Jurnal Konversi Universitas Muhammadiyah Jakarta
7
(
1
),
19
28
(
2018
).
32.
Stambolova
,
I.
,
Georgiev
,
V.
,
Batakliev
,
T.
,
Lutzkanov
,
L.
,
Blaskov
,
V.
,
Atanasova
,
G.
, …
Eliyas
,
A.
Synthesis and characterization of Nickel and Silver loaded activated carbon catalyst for ozone decomposition
.
Journal of Chemical Technology and Metallurgy
51
(
2
),
181
187
(
2016
).
33.
Trisunaryanti
,
W.
,
Triyono
,
Falah
,
I. I.
,
Siagian
,
A. D.
, and
Marsuki
,
M. F.
Synthesis of ce-mesoporous silica catalyst and its lifetime determination for the hydrocracking of waste lubricant
.
Indonesian Journal of Chemistry
18
(
3
),
441
447
(
2018
). .
34.
Zhao
,
H.
,
Zhong
,
Z.
,
Li
,
Z.
, and
Wang
,
W.
Research on catalytic pyrolysis of algae based on Py-GC/MS
.
Royal Society Open Science
6
(
11
) (
2019
). .
35.
Prasiwi
,
A. D.
,
Trisunaryanti
,
W.
,
Triyono
,
Falah
,
I. I.
,
Santi
,
D.
, and
Marsuki
,
M. F.
Synthesis of mesoporous carbon from merbau wood (Intsia spp.) by microwave method as ni catalyst support for a­ cellulose hydrocracking
.
Indonesian Journal of Chemistry
19
(
3
),
575
582
(
2019
). .
36.
Hendriyana
,
H.
,
Nurdini
,
L.
,
Khotimah
,
R. A. K.
,
Sukandi
,
N. R.
,
Ainun
,
T. D.
,
Nurjanah
,
E. O.
, …
Khoerunnisa
,
F.
Athmospheric Hydrocracking of Jatropha Oil Using Woodchar Catalyst
.
Jurua! Bahan Alam Terbarukan
9
(
2
),
113
119
(
2020
). .
This content is only available via PDF.
You do not currently have access to this content.