We made acquainted an submerged concept augmentation model from the idea of patterning and the teleost fish retina’s role. We want to provide answers to the concerns about underwater face deconstruction that have been raised by both clouding and decreased contrast. The variable colour bias is adjusted using the reaction from color-impressionable level containers to cones and a red channel adjustment. The edges and contrasts of the product depiction are probably accentuated by the center surround aspirant strategy of the vacillating containers and the reaction from amacrine containers to interplexi form containers before reaching level containers. The center of activity containers accompanying color-rival means are secondhand for color augmentation and color discipline. The enhanced figure is reorganized using a fusion process that combines the angle retina’s ON and OFF pathway outputs. Extensive methods and mathematical evaluations on differing submerged settings certify the hostile depiction of our method. This model again considerably develops the veracity of broadcast plan guess and local feature point equal utilizing the submerged countenance.

1.
R.
Schettini
and
S.
Corchs
, “
Underwater image processing: State of the art of restoration and image enhancement methods
,”
EURASIP J. Adv. Signal Process.
, vol.
2010
, Dec.
2010
, Art. no. 746052.
2.
E.
Trucco
and
A. T.
Olmos-Antillon
, “
Self-tuning underwater image restoration
,”
IEEEJ. Ocean. Eng.
, vol.
31
, no.
2
, pp.
511
519
, Apr.
2006
.
3.
H.
Lu
,
Y.
Li
, and
S.
Serikawa
, “
Underwater image enhancement using guided trigonometric bilateral filter and fast automatic color correction
,”
in Proc. IEEE Int. Conf. Image Process.
, Sep.
2013
, pp.
3412
3416
.
4.
D.
Berman
,
T.
Treibitz
, and
S.
Avidan
, “
Diving into haze-lines: Color restoration of underwater images
,”
in Proc. Brit. Mach. Vis. Conf. (BMVC)
, vol.
1
, no.
2
,
2017
, pp.
1
12
.
5.
J. Y.
Chiang
and
Y.-C.
Chen
, “
Underwater image enhancement by wavelength compensation and dehazing
,”
IEEE Trans. Image Process.
, vol.
21
, no.
4
, pp.
1756
1769
, Apr.
2012
.
6.
B.
Henke
,
M.
Vahl
, and
Z.
Zhou
, “
Removing color cast of underwater images through non-constant color constancy hypothesis
,” in
Proc. 8th Int. Symp. Image Signal Process. Anal. (ISPA)
, Sep.
2013
, pp.
20
24
.
7.
C.
Ancuti
,
C. O.
Ancuti
,
T.
Haber
, and
P.
Bekaert
, “
Enhancing underwater images and videos by fusion
,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
, Jun.
2012
, pp.
81
88
.
8.
M.
Bryson
,
M.
Johnson-Roberson
,
O.
Pizarro
, and
S.
Williams
, “
Colour consistent structure-from-motion models using underwater imagery
,” in
Proc. Int. conf. Robot. Sci. Syst.
,
2012
, pp.
33
40
.
9.
C. O.
Ancuti
,
C.
Ancuti
,
C.
De Vleeschouwer
, and
P.
Bekaert
, “
Color balance and fusion for underwater image enhancement
,”
IEEE Trans. Image Process.
, vol.
27
, no.
1
, pp.
379
393
, Jan.
2018
.
10.
C.
Li
,
J.
Guo
, and
C.
Guo
, “
Emerging from water: Underwater image color correction based on weakly supervised color transfer
,”
IEEE Signal Process. Lett.
, vol.
25
, no.
3
, pp.
323
327
, Mar.
2018
.
11.
J.
Li
,
K. A.
Skinner
,
R. M.
Eustice
, and
M.
Johnson-Roberson
, “
WaterGAN: Unsupervised generative network to enable real-time color correction of monocular underwater images
,”
IEEE Robot. Autom. Lett.
, vol.
3
, no.
1
, pp.
387
394
, Jan.
2018
.
12.
A.
Galdran
,
D.
Pardo
,
A.
Picón
, and
A.
Alvarez-Gila
, “
Automatic red-channel underwater image restoration
,”
J. Vis. Commun. Image Represent.
, vol.
26
, pp.
132
145
, Jan.
2015
.
13.
Y.-T.
Peng
,
X.
Zhao
, and
P. C.
Cosman
, “
Single underwater image enhancement usingdepth estimation based on blurriness
,” in
Proc. IEEE Int. Conf. Image Process. (ICIP)
, Sep.
2015
, pp.
4952
4956
.
14.
Y.-T.
Peng
and
P. C.
Cosman
, “
Underwater image restoration based on image blurriness and light absorption
,”
IEEE Trans. Image Process.
, vol.
26
, no.
4
, pp.
1579
1594
, Apr.
2017
.
15.
Kumaraswamy
,
E.
,
Vatti
,
R.
,
Vallathan
,
G.
,
Prasad
,
C. R.
, &
Danthamala
,
K. R.
(
2020
, December).
SVD Based Robust Unsighted Video Watermarking Technique for different attacks
. In
IOP Conference Series: Materials Science and Engineering
(Vol.
981
, No.
3
, p.
032030
). IOP Publishing.
16.
Kumaraswamy
,
E.
,
Kumar
,
G. M.
,
Mahender
,
K.
,
Bukkapatnam
,
K.
, &
Prasad
,
C. R.
(
2020
, December).
Digital Watermarking: State of The Art and Research Challenges in Health Care & Multimedia Applications
. In
IOP Conference Series: Materials Science and Engineering
(Vol.
981
, No.
3
, p.
032031
). IOP Publishing.
17.
Kumaraswamy
,
E.
,
Sharma
,
S.
, &
Kumar
,
S.
(
2022
, May).
A review on cancer detection strategies with help of biomedical images using machine learning techniques
. In
AIP Conference Proceedings
(Vol.
2418
, No.
1
, p.
030064
). AIP Publishing LLC. .
18.
Kumaraswamy
,
E.
,
Sharma
,
S.
, &
Kumar
,
S.
(
2021
, November).
Invasive Ductal Carcinoma Grade Classification in Histopathological Images using Transfer Learning Approach
. In
2021 IEEE Bombay Section Signature Conference (IBSSC)
(pp.
1
6
).
IEEE
.
19.
Kumaraswamy
,
E.
(
2022
, May).
Key challenges in the diagnosis of cancer using artificial intelligence methods
. In
AIP Conference Proceedings
(Vol.
2418
, No.
1
, p.
030049
). AIP Publishing LLC. .
20.
Kumaraswamy
,
E.
,
Mahender
,
K.
,
Prasad
,
C. R.
,
Govardhan
,
N.
, &
Yadav
,
B. P.
(
2022
, May).
Digital watermarking techniques: Comparative analysis and robustness for real time applications
. In
AIP Conference Proceedings
(Vol.
2418
, No.
1
, p.
030070
). AIP Publishing LLC. .
21.
Sharma
,
S.
,
Kumaraswamy
,
E.
, &
Kumar
,
S.
(
2023
). Retrospective Study of Convolutional Neural Network for Medical Image Analysis and a Deep Insight Through Histopathological Dataset. In
Computational Intelligence: Select Proceedings of InCITe
2022 (pp.
47
58
).
Singapore
:
Springer Nature Singapore
.
This content is only available via PDF.
You do not currently have access to this content.