Artificial Intelligence has been used to interpret data to make decisions and understand the emotions of humans. Sentiment analysis is a technique for determining people’s attitudes, feelings, and emotions about a certain purpose, such as people, or organizations. Since the emergence of the internet, individuals have used text messaging as a source to communicate with each other. As a result, in today’s virtual community, robots must interpret emotions in views, comments, and textual exchanges to give emotionally aware replies to users. Emotion detection is a subtype of sentiment analysis that predicts a specific emotion rather than just reporting good, negative, or neutral. Many researchers have previously worked on voice and facial expressions for emotion identification in recent years. However, detecting emotions in the text is a time-consuming operation. Humans easily recognize emotions, but the real issue emerges with technology. To discern emotions in text, machines require an accurate algorithm. This study uses a data set from open-source Kaggle. Our algorithm, unlike previous research, can detect emotions from text with an at most accuracy of over 86%.

1.
Sherine
Rady
, and
Mostafa
Aref
, “
A Deep Learning Architecture with Word Embeddings to Classify Sentiment in Twitter
”,
Springer Nature Switzerland AG
2021
,
A. E.
Hassanien
et al. (Eds.): AISI 2020, AISC 1261, Pp.
115
125
, 0032021
2.
D.
Seal
,
U. K.
Roy
, and
R.
Basak
, “Sentence-level emotion detection from text based on semantic rules,”
Information and Communication Technology for Sustainable Development
,
Springer
,
Singapore
, Pp.
423
430
, (
2020
).
3.
Santosh Kumar
Bharti
,
S.
Varadhaganapathy
,
Rajeev Kumar
Gupta
,
Prashant Kumar
Shukla
,
Mohamed
Bouye
,
Simon
KaranjaHingaa
,
Amena
Mahmoud
, “
Text-Based Emotion Recognition Using Deep Learning Approach
”,
Computational Intelligence and Neuroscience
, Article ID
2645381
,
8
, (
2022
).
4.
Binali
,
Haji
,
Chen
Wu
, and
Vidyasagar
Potdar
. “
Computational approaches for emotion detection in text
.” In
4th IEEE international conference on digital ecosystems and technologies
, Pp.
172
177
.
IEEE
, (
2010
).
5.
Hongyu
Han
,
Yongshi
Zhang
,
Jianpei
Zhang
,
Jing
Yang
, and
Yong
Wang
, “
A Hybrid Sentiment Analysis Method
”,
Springer Nature Singapore Pte Ltd
. 2021,
Q.
Liu
et al. (Eds.): CENet 2020, AISC 1274, Pp.
1135
1146
, (
2021
).
6.
Alswaidan
,
Nourah
, and
Mohamed
El BachirMenai
. “
A survey of state-of-the-art approaches for emotion recognition in text
.”
Knowledge and Information Systems
62
(
8
) (
2020
):
2937
2987
.
7.
Ditya
Dave
,
Santosh
Bharti
,
Samir
Patel
, and
Sam bit Kumar
Mishra
, “A Real-Time Sentiments Analysis System Using Twitter Data”,
O Springer Nature Singapore Pte Ltd
.
2021
,
D.
Mishra
ct al. (eds.),
liitelligetitu+id Cloud Computing, Srnan Innovation, Systeriis and Technologies
153
.
8.
Mendu
,
M.
,
Krishna
,
B.
,
Sandeep
,
C.H.
,
Mahesh
,
G.
,
Pallavi
,
J.
Development of real time data analytics based web applications using NoSQL databases
2022
AIP Conference Proceedings
2418
020038
, .
9.
Zhang
,
J.
,
Yin
,
Z.
,
Chen
,
P.
, &
Nichele
,
S.
(
2020
).
Emotion recognition using multi-modal data and machine learning techniques: A tutorial and review
.
Information Fusion
,
59
,
103
126
.
10.
Ninaus
,
M.
,
Greipl
,
S.
,
Kiili
,
K.
,
Lindstedt
,
A.
,
Huber
,
S.
,
Klein
,
E.
, … &
Moeller
,
K.
(
2019
).
Increased emotional engagement in game-based learning–A machine learning approach on facial emotion detection data
.
Computers & Education
,
142
,
103641
.
11.
Jain
,
U.
, &
Sandhu
,
A.
(
2009
).
A review on the emotion detection from text using machine learning techniques
.
Emotion
,
5
(
4
),
2645
2650
.
12.
Guellil
,
Imane
,
Houda
Saâdane
,
Faical
Azouaou
,
Billel
Gueni
, and
Damien
Nouvel
. “
Arabic natural language processing: An overview
.”
Journal of King Saud University-Computer and Information Sciences
33
(
5
) (
2021
):
497
507
.
13.
Gu
,
Yu
,
Robert
Tinn
,
Hao
Cheng
,
Michael
Lucas
,
Naoto
Usuyama
,
Xiaodong
Liu
,
Tristan
Naumann
,
Jianfeng
Gao
, and
Hoifung
Poon
. “
Domain-specific language model pretraining for biomedical natural language processing
.”
ACM Transactions on Computing for Healthcare (HEALTH)
3
(
1
) (
2021
):
1
23
.
14.
Arts
,
Sam
,
Jianan
Hou
, and
Juan Carlos
Gomez
. “
Natural language processing to identify the creation and impact of new technologies in patent text: Code, data, and new measures
.”
Research Policy
50
(
2
) (
2021
):
104144
.
15.
Zhao
,
Liping
,
Waad
Alhoshan
,
Alessio
Ferrari
,
Keletso J.
Letsholo
,
Muideen A.
Ajagbe
,
Erol-Valeriu
Chioasca
, and
Riza T.
Batista-Navarro
. “
Natural language processing for requirements engineering: a systematic mapping study
.”
ACM Computing Surveys (CSUR)
54
(
3
), (
2021
):
1
41
.
16.
Yadav
,
Apurwa
,
Aarshil
Patel
, and
Manan
Shah
. “
A comprehensive review on resolving ambiguities in natural language processing
.”
AI Open
,
2
(
2021
):
85
92
.
17.
Bashir
,
Muhammad
Farrukh
,
Hamza
Arshad
,
Abdul Rehman
Javed
,
Natalia
Kryvinska
, and
Shahab S.
Band
. “
Subjective answers evaluation using machine learning and natural language processing
.”
IEEE Access
9
(
2021
):
158972
158983
.
18.
Ravi Kumar
,
R.
,
Mohmmad
,
S.
,
Shabana
,
Kothandaraman
D.
,
Ramesh
,
D
, “Static Hand Gesture Recognition for ASL Using MATLAB Platform, Computer Communication”,
Networking and IoT. Lecture Notes in Networks and Systems
,
Springer
,
Singapore
,
459
, (
2023
).
19.
Y.
Chanti
,
Mahesh
Akarapu
,
B.
Swathi
,
B.
Vijaykumar
,
D.
Kothandaraman
,
Using the NI PXI platform for Li Fi-enabled intelligent transportation systems
,
AIP Conference Proceedings
, Vol.
2418
, issue.
1
,
2022
, pp.
020071
, .
20.
D.
Kothandaraman
,
A.
Balasundaram
,
E.
Sudarshan
,
M.
Sheshikala
,
B.
Vijaykumar
, “
BLE based secure text communication using IoT
”,
AIP Conference Proceedings
,
2418
(
1
),
2022
, Pp.
020064
, .
21.
Jamalpur
,
B.
,
Rajya Laxmi
,
M.
,
Kothandaraman
,
D.
,
Kumar
,
K.S.
,
Kafila
, Opinion Mining on Restaurant Rating Based on Aspects, Data Engineering and Intelligent Computing.
Lecture Notes in Networks and Systems
,
Springer
,
Singapore
, (
446
), (
2022
).
22.
A.
Balasundaram
,
D.
Kothandaraman
,
S.
Ashokkumar
,
E.
Sudarshan
,
Chest X-ray image based COVID prediction using machine
learning
,
AIP Conference Proceedings
,
2418
(
1
),
2022
, Pp.
020079
. .
23.
Ayoub
,
Jackie
,
X. Jessie
Yang
, and
Feng
Zhou
. “
Combat COVID-19 infodemic using explainable natural language processing models
.”
Information Processing & Management
58
(
4
) (
2021
):
102569
.
24.
Raharjana
,
Indra
Kharisma
,
Daniel
Siahaan
, and
Chastine
Fatichah
. “
User stories and natural language processing: A systematic literature review
.”
IEEE Access
9
(
2021
):
53811
53826
.
25.
Liu
,
Xia
,
Hyunju
Shin
, and
Alvin C.
Burns
. “
Examining the impact of luxury brand’s social media marketing on customer engagement: Using big data analytics and natural language processing
.”
Journal of Business Research
125
(
2021
):
815
826
.
26.
Shahbazi
,
Zeinab
, and
Yung-Cheol
Byun
. “
Fake media detection based on natural language processing and blockchain approaches
.”
IEEE Access
9
(
2021
):
128442
128453
.
27.
Ebadi
,
Ashkan
,
Pengcheng
Xi
,
Stéphane
Tremblay
,
Bruce
Spencer
,
Raman
Pall
, and
Alexander
Wong
. “
Understanding the temporal evolution of COVID-19 research through machine learning and natural language processing
.”
Scientometrics
126
(
1
) (
2021
):
725
739
.
28.
Bausch
,
Johannes
,
Sathyawageeswar
Subramanian
, and
Stephen
Piddock
. “
A quantum search decoder for natural language processing
.”
Quantum Machine Intelligence
3
(
1
) (
2021
):
1
24
.
29.
Demner-Fushman
,
Dina
,
Noémie
Elhadad
, and
Carol
Friedman
. “Natural language processing for health-related texts.” In
Biomedical Informatics
, Pp.
241
272
.
Springer
,
Cham
,
2021
.
30.
Dessì
,
Danilo
,
Francesco
Osborne
,
Diego Reforgiato
Recupero
,
Davide
Buscaldi
, and
Enrico
Motta
. “
Generating knowledge graphs by employing natural language processing and machine learning techniques within the scholarly domain
.”
Future Generation Computer Systems
116
(
2021
):
253
264
.
31.
M.
Sheshikala
,
Sallauddin
Mohmmad
,
D.
Kothandaraman
,
Dadi
Ramesh
,
Ranganath
Kanakam
, Emotion Recognition Based on Streaming Real-Time Video with Deep Learning Approach, Computer Communication, Networking and IoT,
Springer
,
Singapore
,
2023
, Pp.
393
401
.
32.
Prashanth
B.
,
Krishna
D.B.
,
Balasundaram
A.
,
Tejaswi
B.
,
Govardhan
N.
Implementation patterns of high performance machine learning algorithms using Apache Mahout
2022
AIP Conference Proceedings
2418
20044
33.
Prashanth
B.
,
Krishna
D.B.
,
Shaik
M.A.
,
Tejaswi
B.
,
Kiran
K.R.
Optimization factors with high performance computing and data science based implementations with metaheuristics
2022
AIP Conference Proceedings
2418
20043
34.
Prashanth
B.
,
Neelima
G.
,
Dule
C.S.
,
Chandra Prakash
T.
,
Tarun Reddy
S.
Data Science and Machine Learning Integrated Implementation Patterns for Cavernous Knowledge Discovery from COVID-19 Data
2020
IOP Conference Series: Materials Science and Engineering
981
2
22004
35.
Sarla
P.
,
Rakmaiah
S.
,
Reddy
R.A.
,
Rajesh
A.
,
Kumaraswamy
E.
,
Navya
,
Rekha
P.M.
Forecasting the spread of Covid-19 pandemic outbreak in India using ARIMA time series modelling
2022
AIP Conference Proceedings
2418
60003
36.
Shaik
M.A.
,
Manoharan
G.
,
Prashanth
B.
,
Akhil
N.
,
Akash
A.
,
Reddy
T.R.S.
Prediction of crop yield using machine learning
2022
AIP Conference Proceedings
2418
20072
37.
Sravanthi
T.
,
Hema
V.
,
Tharun Reddy
S.
,
Mahender
K.
,
Venkateshwarlu
S.
Detection of Mentally Distressed Social Media Profiles Using Machine Learning Techniques
2020
IOP Conference Series: Materials Science and Engineering
981
2
22056
38.
Sudarshan
E.
,
Kumari
D.A.
,
Reddy
Y.C.A.P.
,
Balasundaram
A.
,
Mahender
K.
Machine learning based automatic vehicle alert system
2022
AIP Conference Proceedings
2418
20058
39.
Sudarshan
E.
,
Naik
K.S.
,
Kumar
P.P.
Parallel approach for backward coding of wavelet trees with CUDA
2020
ARPN Journal of Engineering and Applied Sciences
15
9
1094
1100
40.
Yadav
B.P.
,
Ghate
S.
,
Harshavardhan
A.
,
Jhansi
G.
,
Kumar
K.S.
,
Sudarshan
E.
Text categorization Performance examination Using Machine Learning Algorithms
2020
IOP Conference Series: Materials Science and Engineering
981
2
22044
41.
Yadav
B.P.
,
Sheshikala
M.
,
Swathi
N.
,
Chythanya
K.R.
,
Sudarshan
E.
Women Wellbeing Assessment in Indian Metropolises Using Machine Learning models
2020
IOP Conference Series: Materials Science and Engineering
981
2
22042
42.
Chada
R.
,
Kumar
N.S.
,
Reddy
I.R.
Investigation of micro structural characteristics of friction stir welded AA6061 joint with different particulate reinforcements addition
2022
AIP Conference Proceedings
2418
50010
43.
Jamalpur
B.
,
Korra
S.N.
,
Rajanala
V.P.
,
Sudarshan
E.
,
Yadav
B.P.
Machine learning intersections and challenges in deep learning
2020
IOP Conference Series: Materials Science and Engineering
981
2
22072
44.
Rajesh
A.
,
Sammaiah
P.
,
Krishna
L.R.
,
Sarla
P.
,
Govardhan
N.
,
Sudarshan
E.
,
Himabindu
S.
Identification of engineering drawing entities
2022
AIP Conference Proceedings
2418
50001
45.
Sirikonda
S.
,
Kumar
S.N.
,
Chandana
G.
,
Nikhitha
M.
,
Hima Sree
S.
,
Mahender
K.
Automatic detection of tomato leaf contamination portion using deep neural network
2022
AIP Conference Proceedings
2418
20054
46.
Sirikonda
S.
,
Kumar
S.N.
,
Sravanthi
T.
,
Srinivas
J.
,
Manchikatla
S.T.
,
Kumaraswamy
E.
Forecast the death and recovery rate of COVID 2019 using ARIMA and PROPHET models
2022
AIP Conference Proceedings
2418
20055
47.
Sivalenka
V.
,
Aluvala
S.
,
Sneha
Y.
,
Mannan
K.
,
Farheen
S.
,
Mahender
K.
Concurrences of deep learning arise in analysis of bigdata
2022
AIP Conference Proceedings
2418
20057
48.
Sridevi
M.
,
Manikyaarun
N.
,
Sheshikala
M.
,
Sudarshan
E.
Personalized fashion recommender system with image based neural networks
2020
IOP Conference Series: Materials Science and Engineering
981
2
22073
49.
Karre
R.K.
,
Srinivas
K.
,
Mannan
K.
,
Prashanth
B.
,
Prasad
C.R.
A review on hydro power plants and turbines
2022
AIP Conference Proceedings
2418
30048
50.
Kishan
P.A.
,
Sandeep
C.H.
,
Tirupathi
V.
,
Syed Nawaz
M.D.
,
Sudarshan
E.
Time-lined capturing & delivering of events with SVG & audio overlays: An interactive & versioned content delivery
2022
AIP Conference Proceedings
2418
20075
.
This content is only available via PDF.
You do not currently have access to this content.