The preparation of Graphene oxide (GO) was carried out using the modified Hummers method. The obtained graphene oxide was initiated by oxidizing natural graphite from corn cobs’ waste using sulfuric acid, potassium permanganate and sonication. The graphene oxide obtained was characterized using XRD and FTIR instruments. The XRD result represented the diffraction angel (2θ) of graphene oxide was 11.56°. Then the FTIR result showed that the surface of GO has an epoxy group (C-O-C) which detected at a wavenumber of 1204 cm−1, while the peak at 2360 cm−1 was corresponding to the carbonyl (C=O) from carboxylic acid (C(=O)OH) and another peak at 745 cm−1 was associated to the C-H bond. In addition, the synthesized GO had a surface area of 8.055 m2/g based on SBET analysis.

1.
A. M.
Dimiev
,
K.
Shukhina
, and
A.
Khannanov
, “
Mechanism of the graphene oxide formation. The role of water, ‘reversibility’ of the oxidation, and mobility of the C–O bonds
,”
Carbon N. Y.
, vol.
166
, pp.
1
14
, Sep.
2020
, doi: .
2.
L.
Chen
,
C.
Batchelor-McAuley
,
B.
Rasche
,
C.
Johnston
,
N.
Hindle
, and
R. G.
Compton
, “
Surface area measurements of graphene and graphene oxide samples: Dopamine adsorption as a complement or alternative to methylene blue?
,”
Appl. Mater. Today
, vol.
18
, p.
100506
,
2020
, doi: .
3.
Z.
Zhou
et al, “
Graphene oxide-modified zinc anode for rechargeable aqueous batteries
,”
Chem. Eng. Sci.
, vol.
194
, pp.
142
147
,
2019
, doi: .
4.
F.
Wang
et al, “
Advanced Supercapacitors Based on α-Ni(OH)2 Nanoplates/Graphene Composite Electrodes with High Energy and Power Density
,”
ACS Appl. Energy Mater.
, vol.
1
, no.
4
, pp.
1496
1505
,
2018
, doi: .
5.
J.
Xu
et al, “
Copper nanodot-embedded graphene urchins of nearly full-spectrum solar absorption and extraordinary solar desalination
,”
Nano Energy
, vol.
53
, pp.
425
431
,
2018
, doi: .
6.
S.
Korkmaz
and
A.
Kariper
, “
Graphene and graphene oxide based aerogels: Synthesis, characteristics and supercapacitor applications
,”
J. Energy Storage
, vol.
27
, no. September
2019
, 2020, doi: .
7.
J. I.
Prado
and
L.
Lugo
, “
Enhancing the Thermal Performance of a Stearate Phase Change Material with Graphene Nanoplatelets and MgO Nanoparticles
,”
ACS Appl. Mater. Interfaces
, vol.
12
, no.
35
, pp.
39108
39117
,
2020
, doi: .
8.
W.
Xie
and
M.
Huang
, “
Immobilization of Candida rugosa lipase onto graphene oxide Fe3O4 nanocomposite: Characterization and application for biodiesel production
,”
Energy Convers. Manag.
, vol.
159
, no. September
2017
, pp.
42
53
,
2018
, doi: .
9.
B. H.
Jume
,
M. A.
Gabris
,
H. Rashidi
Nodeh
,
S.
Rezania
, and
J.
Cho
, “
Biodiesel production from waste cooking oil using a novel heterogeneous catalyst based on graphene oxide doped metal oxide nanoparticles
,”
Renew. Energy
, vol.
162
, pp.
2182
2189
,
2020
, doi: .
10.
N. C.
Panyam
,
K.
Verspoor
,
T.
Cohn
, and
K.
Ramamohanarao
, “
Exploiting graph kernels for high performance biomedical relation extraction
,”
J. Biomed. Semantics
, vol.
9
, no.
1
, pp.
1
11
,
2018
, doi: .
11.
M.
Hoseini-Ghahfarokhi
et al, “
Applications of graphene and graphene oxide in smart drug/gene delivery: Is the world still flat?
,”
Int. J. Nanomedicine
, vol.
15
, pp.
9469
9496
,
2020
, doi: .
12.
Z.
Yang
,
D.
Wang
,
Z.
Meng
, and
Y.
Li
, “
Adsorption separation of CH4/N2 on modified coal-based carbon molecular sieve
,”
Sep. Purif. Technol.
, vol.
218
, no. November
2018
, pp.
130
137
,
2019
, doi: .
13.
A. A.
Ali
,
M.
Madkour
,
F.
Al Sagheer
,
M. I.
Zaki
, and
A. A.
Nazeer
, “
Low-temperature catalytic co oxidation over non-noble, efficient chromia in reduced graphene oxide and graphene oxide nanocomposites
,”
Catalysts
, vol.
10
, no.
1
, Jan.
2020
, doi: .
14.
X.
Wang
,
H.
Xie
,
Z.
Wang
,
K.
He
, and
D.
Jing
, “
Graphene oxide as a multifunctional synergist of insecticides against lepidopteran insect
,”
Environ. Sci. Nano
, vol.
6
, no.
1
, pp.
75
84
,
2019
, doi: .
15.
S.
Song
et al, “
Graphene Oxide as the Potential Vector of Hydrophobic Pesticides: Ultrahigh Pesticide Loading Capacity and Improved Antipest Activity
,”
ACS Agric. Sci. Technol.
, vol.
1
, no.
3
, pp.
182
191
,
2021
, doi: .
16.
T.
Wang
et al, “
Strong adhesion and high optoelectronic performance hybrid graphene/carbon nanotubes transparent conductive films for green-light OLED devices
,”
Surfaces and Interfaces
, vol.
24
, no. April, p.
101137
,
2021
, doi: .
17.
Y.
Lin
and
H.
Du
, “
Graphene reinforced cement composites: A review
,”
Constr. Build. Mater.
, vol.
265
, p.
120312
,
2020
, doi: .
18.
S.
Han
,
Q.
Meng
,
S.
Araby
,
T.
Liu
, and
M.
Demiral
, “
Mechanical and electrical properties of graphene and carbon nanotube reinforced epoxy adhesives: Experimental and numerical analysis
,”
Compos. Part A Appl. Sci. Manuf.
, vol.
120
, no. February, pp.
116
126
,
2019
, doi: .
19.
J.
Aixart
,
F.
Díaz
,
J.
Llorca
, and
J.
Rosell-Llompart
, “
Increasing reaction time in Hummers’ method towards well exfoliated graphene oxide of low oxidation degree
,”
Ceram. Int.
, vol.
47
, no.
15
, pp.
22130
22137
,
2021
, doi: .
20.
V.
Kumaran
,
P.
Sudhagar
,
A. K.
Konga
, and
G.
Ponniah
, “
Photocatalytic degradation of synthetic organic reactive dye wastewater using GO-TiO2 nanocomposite
,”
Polish J. Environ. Stud.
, vol.
29
, no.
2
, pp.
1683
1690
,
2020
, doi: .
21.
A.
Mehmood
et al, “
Graphene based nanomaterials for strain sensor application - A review
,”
J. Environ. Chem. Eng.
, vol.
8
, no.
3
, p.
103743
,
2020
, doi: .
22.
S.
Ko
,
Y. J.
Kwon
,
J. U.
Lee
, and
Y. P.
Jeon
, “
Preparation of synthetic graphite from waste PET plastic
,”
J. Ind. Eng. Chem.
, vol.
83
, pp.
449
458
,
2020
, doi: .
23.
M.
Das
,
T. R.
Aswathy
,
S.
Pal
, and
K.
Naskar
, “
Effect of ionic liquid modified graphene oxide on mechanical and self-healing application of an ionic elastomer
,”
Eur. Polym. J.
, vol.
158
, no. August, p.
110691
,
2021
, doi: .
24.
H.
Ilyas
,
S.
Shawuti
,
M.
Siddiq
,
J. H.
Niazi
, and
A.
Qureshi
, “
PEG functionalized graphene oxide-silver nano-additive for enhanced hydrophilicity, permeability and fouling resistance properties of PVDF-co-HFP membranes
,”
Colloids Surfaces A Physicochem. Eng. Asp.
, vol.
579
, no. July, p.
123646
,
2019
, doi: .
25.
C.
Li
,
Y.
Shi
,
X.
Chen
,
D.
He
,
L.
Shen
, and
N.
Bao
, “
Controlled synthesis of graphite oxide: Formation process, oxidation kinetics, and optimized conditions
,”
Chem. Eng. Sci.
, vol.
176
, pp.
319
328
,
2018
, doi: .
26.
A. Rezvani
Moghaddam
,
M.
Kamkar
,
Z.
Ranjbar
,
U.
Sundararaj
,
A.
Jannesari
, and
B.
Ranjbar
, “
Tuning the Network Structure of Graphene/Epoxy Nanocomposites by Controlling Edge/Basal Localization of Functional Groups
,”
Ind. Eng. Chem. Res.
, vol. 58, no. 47, pp.
21431
21440
,
2019
, doi: .
27.
T. M.
McCoy
,
G.
Turpin
,
B. M.
Teo
, and
R. F.
Tabor
, “
Graphene oxide: a surfactant or particle?
,”
Curr. Opin. Colloid Interface Sci.
, vol.
39
, pp.
98
109
,
2019
, doi: .
28.
S.
Dolatabadi
,
M.
Fattahi
, and
M.
Nabati
, “
Solid state dispersion and hydrothermal synthesis, characterization and evaluations of TiO2/ZnO nanostructures for degradation of rhodamine B
,”
Desalin. Water Treat.
, vol.
231
, no. October, pp.
425
435
,
2021
, doi: .
This content is only available via PDF.
You do not currently have access to this content.