The major contribution of this paper is shows how to control the speed of Permanent Magnet Synchronous Motor (PMSM) by using Proportional Integral and Derivative (PID) controller. In this work, proposed PID controller is used in both speed and current feedback loops to control the speed and torque respectively. The proposed PID controller having the advantages which are less oscillatory response, less overshoots and takes less settling time for the speed response compared with existing PID controller used in speed control loop. The PMSM drive is used in electric vehicle, electric traction, robotics and industrial dive applications. The PMSM having the salient features which are high efficiency, high torque density, low torque ripple, high power density and robust construction compare to dc, induction, Switched Reluctance Motor (SRM) and Brush Less Direct Current (BLDC) motors. In this paper, the proposed PID controller is developed based on Field Oriented Control (FOC) strategy is well used to achieve the good speed response of PMSM drive using MATLAB R2019b/Simulink software. The proposed PID controller provides an excellent steady state and dynamic speed response in terms of rise time, peak time, settling time and overshoots. In addition, proposed PID controller has overcome the drawbacks of Proportional (P) and Proportional Integral (PI) controllers. The P and PI controllers which process only first order unstable systems can be stabilized and higher order processes cannot be stabilized respectively. These controllers compromised if the system dynamics change over time.

1.
S.
Silber
,
J.
Sloupensky
,
P.
Dirnberger
,
M.
Moravec
,
W.
Amrhein
, and
M.
Reisinger
, “
High-speed drive for textile rotor spinning applications
,” (
IEEE Trans. Ind. Electron.
, vol.
61
, no.
6
, pp.
2990
2997
,
2014
), doi: .
2.
J.
Nerg
,
M.
Rilla
,
V.
Ruuskanen
,
J.
Pyrhönen
, and
S.
Ruotsalainen
, “
Direct-driven interior magnet permanent-magnet synchronous motors for a full electric sports car
,” (
IEEE Trans. Ind. Electron.
, vol.
61
, no.
8
, pp.
4286
4294
.
2014
), doi: .
3.
J. R.
Dominguez
,
A.
Navarrete
,
M. A.
Meza
,
A. G.
Loukianov
, and
J.
Cañedo
, “
Digital Sliding-Mode Sensorless Control for Surface-Mounted PMSM
,” (
IEEE Trans. Ind. Informatics
, vol.
10
, no.
1
, pp.
13
151
,
2014
).
4.
J.
Wu
,
J.
Zhang
,
B.
Nie
,
Y.
Liu
, and
X.
He
, “
Adaptive Control of PMSM Servo System for Steering-by­Wire System With Disturbances Observation
,” (
IEEE Trans. Transp. Electrif.
, vol.
8
, no.
2
, pp.
2015
2028
,
2022
), doi: .
5.
S.
Gao
,
Y.
Wei
,
D.
Zhang
,
H.
Qi
,
Y
,
Wei
, and
Z.
Yang
, “
Model -Free Hybrid Parallel Predictive Speed Control Based On Ultralocal Model of PMSM for Electric Vehicles
,” (
IEEE Trans. Ind. Electron.
, vol.
69
, no.
10
, pp.
9739
9748
,
2022
), doi: .
6.
Y.
Ma
,
D.
Li
,
Y.
Li
, and
L.
Yang
, “
A Novel Discrete Compound Integral Terminal Sliding Mode Control with Disturbance Compensation for PMSM Speed System
,” (
IEEE/ASME Trans. Mechatronics
, vol.
27
, no.
1
, pp.
549
560
,
2022
), doi: .
7.
P.
Chen
and
Y.
Luo
, “
A Two-Degree-of-Freedom Controller Design Satisfying Separation Principle with Fractional-Order PD and Generalized ESO
” (
EEE/ASME Trans. Mechatronics
, vol.
27
, no.
1
, pp.
13
148
,
2022
), doi: .
8.
Y.
Wang
,
Y.
Feng
,
X.
Zang
, and
J.
Liang
, “
A New Reaching Law for Antidisturbance Sliding Mode Control of PMSM Speed Regulation System
,” (
IEEE Trans. Power Electron.
, vol.
35
, no.
4
, pp.
4117
4126
,
2020
).
9.
P.
Gao
,
G.
Zhang
,
H.
Ouyang
, and
L.
Mei
, “
An Adaptive Super Twisting Nonlinear Fractional Order PID Sliding Mode Control of Permanent Magnet Synchronous Motor Speed Regulation System Based on Extended State Observer
,” (
IEEE Access
, vol.
8
, pp.
53498
53510
,
2020
), doi: .
10.
P.
Chen
,
T.
Pan
, and
S.
Chen
, “
Development of Double Closed-loop Vector Control Using Model Predictive Control for Permanent Magnet Synchronous Motor,
J. Control. Autom. Electr. Syst.
, vol.
32
, no.
3
, pp.
774
785
,
2021
), doi: .
11.
D.
Yadav
and
A.
Verma
, “
Comperative Performance Analysis of PMSM Drive Using MPSO and ACO Techniques
,” (
Int. J. Power Electron. Drive Syst.
, vol.
9
, no.
4
, p.
1510
,
2018
), doi: .
12.
D.
Garduno
,
J. J.
Rivas
,
O.
Castillo
,
R. Ortega
Gonzalez
, and
F. E.
Gutierrez
, “
Current Distortion Rejection in PMSM Drives Using an Adaptive Super-Twisting Algorithm
,” (
IEEE Trans. Energy Convers.
, vol.
37
, no.
2
, pp.
927
934
,
2022
), doi: .
13.
H.
Chen
,
X.
Wang
,
M.
Benbouzid
,
J. F.
Charpentier
,
N.
Aït-Ataed
, and
J.
Han
, “
Improved Fractional-Order PID Controller of a PMSM-Based Wave Compensation System for Offshore Ship Cranes
,” (
J. Mar. Sci. Eng.
, vol.
10
, no.
9
,
2022
), doi: .
14.
Suryakant
,
M.
Sreejeth
, and
M.
Singh
, “
Improved ANFIS based MRAC observer for sensorless control of PMSM
,” (
Intell. Fuzzy Syst.
, vol.
42
, no.
2
, pp.
1061
1073
,
2022
), doi: .
15.
R.
Krishnan
,
Permanent Magnet Synchronous and Brushless DC Motor Drives.
(
2017
). doi: .
16.
P.
Ramesh
,
M.
Umavathi
,
C.
Bharatiraja
,
G.
Ramanathan
, and
S.
Athikkal
, “
Development of a PMSM motor field-oriented control algorithm for electrical vehicles/”Mater
.
Today Proc.
, vol.
65
, pp.
176
187
,
2022
), doi: .
17.
Smriti
rao
K and
R
,
Mishra
, “
Comparative study of P, PI and PID controller for speed control of VSI-fed induction motor
” (
Int. J. Eng. Dev. Res.
, vol.
2
, no.
2
, pp.
2740
2744
,
2014
).
18.
S.
Singh
and
A.
Anvari-Moghaddam
, “
Sensor-based and Sensorless Vector Control of PM Synchronous Motor Drives: A Comparative Study
,” (
IEEE 4th South. Power Electron. Conf. SPEC 2018
, no. December,
2019
), doi: .
19.
P.
Maji
,
P. G.K.
Panda
, and
P. P.K.
Saha
, “
Field Oriented Control of Permanent Magnet Synchronous Motor Using PID Controller
,” (
Int. J. Adv. Res. Electr. Electron. Instrum. Eng.
, vol.
04
, no.
02
, pp.
632
639
,
2015
), doi: .
20.
V.
Kumar
and
A.
Patra
, “
Application of Ziegler-Nichols Method for Tuning of PID Controller
,” (
2nd Int. Conf Recent Innov. Sci. Technol. Manag. Environ.
, no.
2011
), pp.
13
149
,
2016
.
This content is only available via PDF.
You do not currently have access to this content.