Handwritten signature is the most commonly employed behavioral biometric in financial, and legal institutions. Because of its simplicity, forgers may easily counterfeit signatures and conduct fraud. Therefore, the objective of this research is to utilize the advantages of machine learning approaches to recognize forged signatures. To attain this objective, we have used the Deep Convolution Neural Network (DCNN) to classify forged and genuine signatures. Though there are extremely few signature samples available for training, we have attempted to use one of the efficient pre-trained models to improve generalization capability and decrease time complexity. VGG16 CNN has been used out of the available pre-trained models to tackle the problem of handwritten signature verification in a writer-independent approach. VGG16 model is trained and tested using the CEDAR dataset. We conducted experiments to test the efficacy of the model on three different aspects. 1. Dataset Split - To study the effect of variations in train and test dataset split. 2. Number of signature samples - To study the efficacy of the model by varying the number of signature samples per signer,3. Hyper-parameter variation - To study the dependency of the model on various hyper-parameters. Finally, the outcome of these experiments shows that the 80:20 dataset ratio, Adam optimizer, the learning rate of 0.0001,15 epochs, and the number of signature samples equal to 20 give the best results.

1.
Diaz
,
M.
,
Ferrer
,
M. A.
,
Impedovo
,
D.
,
Malik
,
M. I.
,
Pirlo
,
G.
, &
Plamondon
,
R.
(
2019
).
A perspective analysis of handwritten signature technology
.
Acm Computing Surveys (Csur)
,
51
(
6
),
1
39
.
2.
Impedovo
,
D.
, &
Pirlo
,
G.
(
2018
).
Automatic signature verification in the mobile cloud scenario: survey and way ahead
.
IEEE Transactions on Emerging Topics in Computing
,
9
(
1
),
554
568
.
3.
Hafemann
,
Luiz
Gustavo
&
Sabourin
,
Robert
&
Soares
de Oliveira
, Luiz. (
2017
).
Offline Handwritten Signature Verification-Literature Review
.
4.
Simonyan
,
K.
, &
Zisserman
,
A.
(
2014
).
Very deep convolutional networks for large-scale image recognition
. arXiv preprint arXiv:1409.1556.
5.
Bharathi
,
R. K.
, &
Shekar
,
B. H.
(
2013
, August). Off-line signature verification based on chain code histogram and support vector machine. In
2013 International Conference on Advances in Computing, Communications and Informatics (ICACCI)
(pp.
2063
2068
).
IEEE
.
6.
Tammina
,
S.
(
2019
).
Transfer learning using vgg-16 with deep convolutional neural network for classifying images
.
International Journal of Scientific and Research Publications (IJSRP)
,
9
(
10
),
143
150
.
7.
Kuriakose
,
Y. V.
,
Agarwal
,
V.
,
Dixit
,
R.
, &
Dixit
,
A.
(
2022
). A Novel Technique for Fake Signature Detection Using Two-Tiered Transfer Learning. In
Proceedings of International Conference on Computational Intelligence
(pp.
45
58
).
Springer
,
Singapore
.
8.
Gadre
,
A.
,
Pund
,
P.
,
Ajmire
,
G.
, &
Kale
,
S.
(
2021
, October). Signature Recognition Models: Performance Comparison. In
2021 International Conference on Advancements in Electrical, Electronics, Communication, Computing and Automation (ICAECA)
(pp.
1
6
).
IEEE
.
9.
Sheikh
,
M. R.
,
Masud
,
T. H.
,
Khan
,
N. I.
, &
Islam
,
M. N.
(
2021
, December). An Efficient Transfer Learning Model for Predicting Forged (Handwritten) Signature. In
2021 International Conference on Computer, Communication, Chemical, Materials and Electronic Engineering (IC4ME2)
(pp.
1
4
).
IEEE
.
10.
Calik
,
N.
,
Kurban
,
O. C.
,
Yilmaz
,
A. R.
,
Yildirim
,
T.
, &
Ata
,
L. D.
(
2019
).
Large-scale offline signature recognition via deep neural networks and feature embedding
.
Neurocomputing
,
359
,
1
14
.
11.
Kalera
,
M. K.
,
Srihari
,
S.
, &
Xu
,
A.
(
2004
).
Offline signature verification and identification using distance statistics
.
International Journal of Pattern Recognition and Artificial Intelligence
,
18
(
07
),
1339
1360
.
12.
Hafemann
,
L. G.
,
Sabourin
,
R.
, &
Oliveira
,
L. S.
(
2017
).
Learning features for offline handwritten signature verification using deep convolutional neural networks
.
Pattern Recognition
,
70
,
163
176
.
13.
S. V.
Bonde
,
P.
Narwade
and
R.
Sawant
,(
2020
).
Offline Signature Verification Using Convolutional Neural Network
.
6th International Conference on Signal Processing and Communication (ICSC)
, pp.
119
127
, doi: .
14.
Shariatmadari
,
S.
,
Emadi
,
S.
, &
Akbari
,
Y.
(
2019
).
Patch-based offline signature verification using one-class hierarchical deep learning
.
International Journal on Document Analysis and Recognition (IJDAR)
,
22
(
4
),
375
385
.
15.
Jain
,
A.
,
Singh
,
S. K.
, &
Singh
,
K. P.
(
2020
).
Handwritten signature verification using shallow convolutional neural network
.
Multimedia Tools and Applications
,
79
(
27
),
19993
20018
.
16.
Jagtap
,
A. B.
,
Sawat
,
D. D.
,
Hegadi
,
R. S.
,
&Hegadi
,
R. S.
(
2018
). Siamese network for learning genuine and forged offline signature verification. In
International Conference on Recent Trends in Image Processing and Pattern Recognition
(pp.
131
139
).
Springer
,
Singapore
.
17.
Ruiz
,
V.
,
Linares
,
I.
,
Sanchez
,
A.
, &
Velez
,
J. F.
(
2020
).
Off-line handwritten signature verification using compositional synthetic generation of signatures and Siamese Neural Networks
.
Neurocomputing
,
374
,
30
41
.
18.
Jagtap
,
A. B.
,
Sawat
,
D. D.
,
Hegadi
,
R. S.
,
&Hegadi
,
R. S.
(
2020
).
Verification of genuine and forged offline signatures using Siamese Neural Network (SNN
).
Multimedia Tools and Applications
,
79
(
47
),
35109
35123
.
19.
Jain
,
A.
,
Singh
,
S. K.
, &
Pratap Singh
,
K.
(
2021
).
Multi-task learning using GNet features and SVM classifier for signature identification
.
IET Biometrics
,
10
(
2
),
117
126
.
20.
Bonde
,
S. V.
,
Narwade
,
P.
, &
Sawant
,
R.
(
2020
, March). Offline Signature Verification Using Convolutional Neural Network. In
2020 6th International Conference on Signal Processing and Communication (ICSC)
(pp.
119
127
).
IEEE
.
This content is only available via PDF.
You do not currently have access to this content.