To The natural, bio-degradable features and chemical constituents of the sugarcane bagasse (SCB) have been attracting attention as a highly potential and versatile ingredient in composite materials. Eco-friendly and low-cost considerations have set the momentum for material science researchers to identify green materials that give low pollutant indexes. Biodegradable polyesters made from by-products of the sugarcane industry’s aconitic, cinnamic, and glycerol can also be made from sugarcane and used as scaffolds for bone and skin tissue engineering. useful applications in controlled urea release fertilizers. The possibility of using sugarcane bagasse fibers as reinforcement in polymer matrix composites has been investigated. To make activated sugarcane bagasse biochar laced with nitrogen, phosphorous, and potassium in order to produce a fertilizer with the potential for slow nutrient release. Studies on the effects, capabilities, and uses of SCB in its natural state, changed forms, treated with the necessary chemicals and/or methods, combined with materials with different characteristics, and altered production processes. This research paper aims to provide a concise overview of the existing body of literature, which extensively investigates the potential applications and capabilities of SCB.

1.
Qu
,
F.
,
Li
,
W.
,
Dong
,
W.
,
Tam
,
V.W.Y.
,
Yu
,
T.
Durability deterioration of concrete under marineenvironment from material to structure: A critical review
.
J Build Eng.
2021
;
35
(September 2020):
102074
.
2.
Alokika
,
Anu
,
Kumar
,
A.
,
Kumar
,
V.
,
Singh
,
B.
Cellulosic and hemicellulosic fractions of sugarcanebagasse: Potential, challenges and future perspective
.
Int J Biol Macromol.
2021
;
169
:
564
82
.
3.
Nadali
,
E.
,
Tajvidi
,
M.
,
Naghdi
,
R.
Effects of fungal biodegradation on structure-property relationships of medium density fibre board and hybrid polypropylene composite made from sugar-cane residue
.
Int Wood Prod J [Internet].
2021
;
12
(
3
):
152
63
.
4.
Phuphaphud
,
A.
,
Saengprachatanarug
,
K.
,
Posom
,
J.
,
Maraphum
,
K.
,
Taira
,
E.
Prediction of the fibre content of sugarcane stalk by direct scanning using visible-shortwave near infrared spectroscopy
.
Vib Spectrosc.
2019
;
101
(August 2018):
71
80
.
5.
Monzo
,
J.
,
Borrachero
M V
, Dı L.
Sugar-cane bagasse ash (SCBA): studies on its properties forreusing in concrete production
†.
2002
;
325
(September 2001):
321
5
.
6.
Rajamani
,
S.
,
Santhosh
,
R.
,
Raghunath
,
R.
,
Jadhav
,
S.A.
Value-added chemicals from sugarcanebagasse using ionic liquids
.
Chem Pap.
2021
;
75
(
11
):
5605
22
.
7.
Asdrubali
,
F.
,
D’Alessandro
,
F.
,
Schiavoni
,
S.
A review of unconventional sustainable building insulation materials
.
Sustain Mater Technol [Internet].
2015
;
4
(
2015
):
1
17
.
8.
Rattanawongkun
,
P.
,
Kerddonfag
,
N.
,
Tawichai
,
N.
,
Intatha
,
U.
,
Soykeabkaew
,
N.
Improving agricultural waste pulps via self-blending concept with potential use in moulded pulp packaging
.
J Environ Chem Eng.
2020
;
8
(
5
):
104320
.
9.
Torres de Sande
,
V.
,
Sadique
,
M.
,
Pineda
,
P.
,
Bras
,
A.
,
Atherton
,
W.
,
Riley
,
M.
Potential use of sugar cane bagasse ash as sand replacement for durable concrete
.
J Build Eng.
2021
;
39
(February):
102277
.
10.
Lu
,
P.
,
Yang
,
Y.
,
Liu
,
R.
,
Liu
,
X.
,
Ma
,
J.
,
Wu
,
M.
, et al
Preparation of sugarcane bagasse nanocellulose hydrogel as a colourimetric freshness indicator for intelligent food packaging
.
Carbohydr Polym.
2020
;
249
(July):
116831
.
11.
S.
Mansor
,
N. I.
Zainuddin
,
N. A.
Aziz
,
M.
Razali
,
M. I.
Joohari
;
Sugarcane bagasse fiber-An eco-friendly pavement of SMA
.
AIP Conf. Proc.
5 October
2018
;
2020
(
1
):
020032
.
12.
Elkayaly
,
D.
,
Hazem
,
N.
,
Fahim
,
I.S.
Green and Sustainable Packaging Manufacturing: a Case Study of Sugarcane Bagasse-Based Tableware in Egypt
.
Circ Econ Sustain.
2021
;
829
56
.
13.
Chong
,
R.W.W.
,
Ball
,
M.
,
McRae
,
C.
,
Packer
,
N.H.
Comparing the chemical composition of dietary fibres prepared from sugarcane, psyllium husk and wheat dextrin
.
Food Chem.
2019
;
298
(June):
125032
.
14.
Loh
,
Y.R.
,
Sujan
,
D.
,
Rahman
,
M.E.
,
Das
,
C.A.
Review Sugarcane bagasse-The future composite material: A literature review
.
Resour Conserv Recycl.
2013
;
75
:
14
22
.
15.
Vila
,
N.T.
,
Musialak
,
A.L.
,
Ferreira
,
A.
Use of Sugar Cane Fibers for Composites—A Short Review
.
Adv Nat Fibre Compos.
2018
;
27
35
.
16.
Konde
,
K.S.
,
Nagarajan
,
S.
,
Kumar
,
V.
,
Patil
S V.
,
Ranade
V V.
Sugarcane bagasse based biorefineriesin India: Potential and challenges
.
Sustain Energy Fuels.
2021
;
5
(
1
):
52
78
.
17.
Gond
,
R.K.
,
Gupta
,
M.K.
A novel approach for isolation of nanofibers from sugarcane bagasse and its characterization for packaging applications
.
Polym Compos.
2020
;
41
(
12
):
5216
26
.
18.
Deshwal
,
G.K.
,
Alam
,
T.
,
Panjagari
,
N.R.
,
Bhardwaj
,
A.
Utilization of Cereal Crop Residues, Cereal Milling, Sugarcane and Dairy Processing By-Products for Sustainable Packaging Solutions
.
J Polym Environ.
2021
;
29
(
7
):
2046
61
.
19.
Kimchi
,
E.T.
,
Nikfarjam
,
M.
,
Gusani
,
N.J.
,
Avella
,
D.M.
,
Staveley-O’Carroll
,
K.F.
Combined pancreaticoduodenectomy and extended right hemicolectomy: Outcomes and indications
.
Hpb.
2009
;
11
(
7
):
559
64
.
20.
Toscano Miranda
,
N.
,
Lopes Motta
,
I.
,
Maciel Filho
,
R.
,
Wolf Maciel
,
M.R.
Sugarcane bagasse pyrolysis: A review of operating conditions and products properties
.
Renew Sustain Energy Rev.
2021
;
149
(July):
111394
.
21.
Ali
,
S.
,
Javed
,
U.
,
Zafar
,
T.
,
Riaz
,
M.
,
Saeed
,
M.
,
Khizar
,
M.
Eco-friendly incorporation of sugarcanebagasse ash as partial replacement of sand in foam concrete
.
Clean Eng Technol.
2021
;
4
:
100164
.
22.
Gupta
,
H.
,
Kumar
,
H.
,
Kumar
,
M.
,
Gehlaut
,
A.K.
,
Gaur
,
A.
,
Sachan
,
S.
, et al
Synthesis of biodegradablefilms obtained from rice husk and sugarcane bagasse to be used as food packaging material
.
Environ Eng Res.
2020
;
25
(
4
):
506
14
.
23.
Hemnath
,
A.
,
Anbuchezhiyan
,
G.
,
Nanthakumar
,
P.
,
Senthilkumar
,
N.
Tensile and flexural behaviourof rice husk and sugarcane bagasse reinforced polyester composites
.
Mater Today Proc.
2020
;
46
:
3451
4
.
24.
Hamza
,
M.
,
Javed
,
U.
,
Ali
,
A.
,
Saeed
,
M.
Eco-friendly utilization of rice husk ash and bagasse ash blend as partial sand replacement in self-compacting concrete
.
Constr Build Mater.
2020
;
121753
.
25.
Yang
,
Y.
,
Liu
,
H.
,
Wu
,
M.
,
Ma
,
J.
,
Lu
,
P.
Bio-based antimicrobial packaging from sugarcane bagasse nanocellulose/nisin hybrid films
.
Int J Biol Macromol.
2020
;
161
:
627
35
.
26.
Anjos
,
M.A.S.
,
Araújo
,
T.R.
,
Ferreira
,
R.L.S.
,
Farias
,
E.C.
,
Martinelli
,
A.E.
Journal of Building Engineering Properties of self-leveling mortars incorporating a high-volume of sugar cane bagasse ash aspartial Portland cement replacement
.
J Build Eng.
2020
;
32
(August):
101694
.
27.
Micheal
,
A.
,
Moussa
,
R.R.
Investigating the Economic and Environmental Effect of IntegratingSugarcane Bagasse (SCB) Fibers in Cement Bricks
.
Ain Shams Eng J.
2021
.
28.
Pula
,
B.
,
Ramesh
,
S.
,
Pamidipati
,
S.
,
Doddipatla
,
P.
A comparative study of greener alternatives fornanocellulose production from sugarcane bagasse
.
Bioresour Bioprocess.
2021
;
8
(
1
).
29.
Yaradoddi
,
J.S.
,
Banapurmath
,
N.R.
,
Ganachari
S V.
,
Soudagar
,
M.E.M.
,
Mubarak
,
N.M.
,
Hallad
,
S.
, et al
Biodegradable carboxymethyl cellulose based material for sustainable packaging application
.
Sci Rep.
2020
;
10
(
1
):
1
13
.
30.
Medeiros
,
M.H.F.
,
Lima
,
N.B.D.
,
Delgado
JMPQ
,
Silva
,
F.A.N.
,
Azevedo
,
A.C.
,
Guimarães
,
A.S.
, et al
Durability of Concrete Structures with Sugar Cane Bagasse Ash
.
2020
.
31.
Doost-Hoseini
,
K.
,
Taghiyari
,
H.R.
,
Elyasi
,
A.
Correlation between sound absorption coefficients with physical and mechanical properties of insulation boards made from sugar cane bagasse
.
Compos Part B Eng.
2014
;
58
:
10
5
.
32.
Bartos
,
A.
,
Anggono
,
J.
,
Farkas
ÁE
,
Kun
,
D.
,
Soetaredjo
,
F.E.
,
Móczó
J
, et al
Alkali treatment of lignocellulosic fibers extracted from sugarcane bagasse: Composition, structure, properties
.
Polym Test.
2020
;
88
. .
33.
Amin
,
M.N.
,
Ashraf
,
M.
,
Kumar
,
R.
,
Khan
,
K.
,
Saqib
,
D.
,
Ali
,
S.S.
, et al
Role of Sugarcane Bagasse Ash inDeveloping Sustainable Engineered Cementitious Composites
.
Front Mater.
2020
;
7
(April):
1
12
.
34.
Katare
,
V.D.
,
Madurwar
M V.
Process standardization of sugarcane bagasse ash to develop durable high-volume ash concrete
.
J Build Eng.
2021
;
39
(December 2019):
102151
.
35.
Maza-Ignacio
,
O.T.
,
Jiménez-Quero
,
V.G.
,
Guerrero-Paz
,
J.
,
Montes-García
,
P.
Recycling untreated sugarcane bagasse ash and industrial wastes for the preparation of resistant, lightweight andecological fired bricks
.
Constr Build Mater [Internet].
2020
;
234
:
117314
.
36.
Halysh
,
V.
,
Sevastyanova
,
O.
,
Pikus
,
S.
,
Dobele
,
G.
,
Pasalskiy
,
B.
,
Gun
,
V.M.
Sugarcane bagasse and straw as low-cost lignocellulosic sorbents for the removal of dyes and metal ions from water
.
Cellulose.
2020
;
8
.
37.
Sales
,
A.
,
Lima
,
S.A.
Use of Brazilian sugarcane bagasse ash in concrete as sand replacement
.
Waste Manag.
2010
;
30
(
6
):
1114
22
.
38.
Chakraborty
,
A.
,
Borah
,
A.
,
Sharmah
,
D.
Stabilization of Expansive Soil using Sugarcane Straw Ash(SCSA)
.
J Eng Technol Stab.
2016
;
4
(
1
):
3
6
.
39.
Guna
,
V.
,
Ilangovan
,
M.
,
Hu
,
C.
,
Venkatesh
,
K.
,
Reddy
,
N.
Valorization of sugarcane bagasse by developing completely biodegradable composites for industrial applications
.
Ind Crops Prod.
2019
;
131
(January):
25
31
.
40.
Murugesan
,
T.
,
Vidjeapriya
,
R.
,
Bahurudeen
,
A.
Sugarcane Bagasse Ash-Blended Concrete for Effective Resource Utilization Between Sugar and Construction Industries
.
Sugar Tech.
2020
;
22
(
5
):
858
69
.
41.
Fito
,
J.
,
Tefera
,
N.
,
Van Hulle
,
S.W.H.
Sugarcane biorefineries wastewater: bioremediation technologies for environmental sustainability
.
Chem Biol Technol Agric.
2019
;
6
(
1
):
1
13
.
42.
Pandey
,
A.
,
Soccol
,
C.R.
,
Nigam
,
P.
,
Soccol
,
V.T.
Biotechnological potential of agro-industrialresidues. I: Sugarcane bagasse
.
Bioresour Technol.
2000
;
74
(
1
):
69
80
.
43.
Amin
,
M.
,
Attia
,
M.M.
,
Saad
,
I.
,
Elsakhawy
,
Y.
,
Abu
,
K.
,
Abdelsalam
,
B.
Case Studies in Construction Materials Effects of sugarcane bagasse ash and nano eggshell powder on high-strength concrete properties
.
Case Stud Constr Mater.
2022
;
17
(October):
e01528
.
44.
Kumar
,
G.
,
Dora
,
D.T.K.
,
Jadav
,
D.
,
Naudiyal
,
A.
,
Singh
,
A.
,
Roy
,
T.
Utilization and regeneration of wastesugarcane bagasse as a novel robust aerogel as an effective thermal, acoustic insulator, and oiladsorbent
.
J Clean Prod.
2021
;
298
:
126744
.
45.
Abdulkareem
,
S.
,
Ogunmodede
,
S.
,
Aweda
,
J.O.
,
Abdulrahim
,
A.T.
,
Ajiboye
,
T.K.
,
Ahmed
,
I.I.
, et al
Investigation of thermal insulation properties of biomass composites
.
Int J Technol.
2016
;
7
(
6
):
989
99
.
46.
Ezeonuegbu
,
B.A.
,
Machido
,
D.A.
,
Whong
,
C.M.Z.
,
Japhet
,
W.S.
,
Alexiou
,
A.
,
Elazab
,
S.T.
, et al
Agriculturalwaste of sugarcane bagasse as efficient adsorbent for lead and nickel removal from untreatedwastewater: Biosorption, equilibrium isotherms, kinetics and desorption studies
.
Biotechnol Reports.
2021
;
30
:
e00614
.
47.
Moraes
,
J.C.B.
,
Akasaki
,
J.L.
,
Melges
,
J.L.P.
,
Monzó
J
,
Borrachero
M V.
,
Soriano
,
L.
, et al
Assessment ofsugar cane straw ash (SCSA) as pozzolanic material in blended Portland cement: Microstructural characterization of pastes and mechanical strength of mortars
.
Constr Build Mater.
2015
;
94
:
670
7
.
48.
Harripersadth
,
C.
,
Musonge
,
P.
,
Makarfi Isa
,
Y.
,
Morales
,
M.G.
,
Sayago
,
A.
The application of eggshellsand sugarcane bagasse as potential biomaterials in the removal of heavy metals from aqueoussolutions
.
South African J Chem Eng.
2020
;
34
(August):
142
50
.
49.
Bheel
,
N.
,
Memon
,
A.S.
,
Khaskheli
,
I.A.
,
Talpur
,
N.M.
,
Talpur
,
S.M.
,
Khanzada
,
M.A.
Effect of SugarcaneBagasse Ash and Lime Stone Fines on the Mechanical Properties of Concrete
.
Eng Technol Appl Sci Res.
2020
;
10
(
2
):
5534
7
.
50.
Andrade
,
S.
,
Júlio
,
M.
,
França S
De
,
Santana
,
N.
,
Júnior
,
D.A.
,
Véras
,
D.
Effects of adding sugarcanebagasse ash on the properties and durability of concrete
.
Construction and Building Materials.
2021
;
266
.
51.
Liu
,
Q.
,
Singh
,
A.
,
Xiao
,
J.
,
Li
,
B.
,
Wy
,
V.
Resources, Conservation & Recycling Workability and mechanical properties of mortar containing recycled sand from aerated concrete blocks andsintered clay bricks
.
Resour Conserv Recycl.
2020
;
157
(January):
104728
.
52.
Murugesan
,
T.
,
Vidjeapriya
,
R.
,
Bahurudeen
,
A.
Sustainable use of sugarcane bagasse ash andmarble slurry dust in crusher sand based concrete
.
Struct Concr.
2021
;
22
(
S1
):
E183
92
.
53.
Sebastin
,
S.
,
Priya
,
A.K.
,
Karthick
,
A.
,
Sathyamurthy
,
R.
,
Ghosh
,
A.
Agro Waste Sugarcane Bagasse as aCementitious Material for Reactive Powder Concrete
.
Clean Technol.
2020
;
2
(
4
):
476
91
.
54.
Jahanzaib Khalil
,
M.
,
Aslam
,
M.
,
Ahmad
,
S.
Utilization of sugarcane bagasse ash as cementreplacement for the production of sustainable concrete-A review
.
Constr Build Mater.
2021
;
270
:
121371
.
55.
Nanda
,
S.
,
Patra
,
B.R.
,
Patel
,
R.
,
Bakos
,
J.
,
Dalai
,
A.K.
Innovations in applications and prospects ofbioplastics and biopolymers: a review
.
Environ Chem Lett.
2022
;
20
(
1
):
379
95
.
56.
Calva-Estrada
,
S.J.
,
Jiménez-Fernández
,
M.
,
Lugo-Cervantes
,
E.
Protein-Based Films: Advances inthe Development of Biomaterials Applicable to Food Packaging
.
Food Eng Rev.
2019
,
11
.
57.
Mohamed
,
S.A.A.
,
El-Sakhawy
,
M.
,
El-Sakhawy
,
M.A.M.
Polysaccharides, Protein and Lipid-BasedNatural Edible Films in Food Packaging: A Review
.
Carbohydr Polym.
2020
;
238
:
116178
.
58.
Nayak
,
P.
,
Sahoo
,
U.C.
Rheological, chemical and thermal investigations on an aged binderrejuvenated with two non-edible oils
.
Road Mater Pavement Des.
2017
;
18
(
3
):
612
29
.
59.
Hakeem
,
K.R.
,
Jawaid
,
M.
,
Alothman
,
O.Y.
Agricultural biomass based potential materials
.
Springer
,
2015
;
1
505
.
60.
Loh
,
Y.R.
,
Sujan
,
D.
,
Rahman
,
M.E.
,
Das
,
C.A.
Review Sugarcane bagasse-The future compositematerial: A literature review
.
Resour Conserv Recycl.
2013
;
75
:
14
22
.
61.
Indarti
,
E.
,
Muliani
,
S.
,
Wulya
,
S.
,
Rafiqah
,
R.
,
Sulaiman
,
I.
,
Yunita
,
D.
Development of environmental-friendly biofoam cup made from sugarcane bagasse and coconut fiber
.
IOP Conf Ser Earth Environ Sci.
2021
;
711
(
1
).
62.
Rodriguez-Perez
,
S.
,
Serrano
,
A.
,
Pantión
,
A.A.
,
Alonso-Fariñas
,
B.
Challenges of scaling-up PHAproduction from waste streams
.
A review. J Environ Manage.
2018
;
205
:
215
30
.
63.
Maheswari
,
C.
,
Ramya
,
A.S.
,
Priya
,
B.M.
,
Sudhahar
,
S.
,
Prabhu Raj
,
B.
,
Lokesh
,
B.
, et al
Analysis and optimization on the biodegradable plate making process parameters using RSM-based Box-Behnken Design method
.
J Mater Cycles Waste Manag.
2021
;
23
(
6
):
2255
65
.
64.
Andreão
P V.
,
Suleiman
,
A.R.
,
Cordeiro
,
G.C.
,
Nehdi
,
M.L.
Beneficiation of Sugarcane Bagasse Ash:Pozzolanic Activity and Leaching Behavior
.
Waste and Biomass Valorization.
2020
;
11
(
8
):
4393
402
.
65.
Tu
,
H.
,
Zhu
,
M.
,
Duan
,
B.
,
Zhang
,
L.
Recent Progress in High-Strength and Robust RegeneratedCellulose Materials
.
Adv Mater.
2021
;
33
(
28
):
1
22
.
66.
Gómez-Heincke
,
D.
,
Martinez
,
I.
,
Stading
,
M.
,
Gallegos
,
C.
,
Partal
,
P.
Improvement of mechanical andwater absorption properties of plant protein based bioplastics
.
Food Hydrocoll.
2017
;
73
:
21
9
.
67.
Gebbie
,
L.
,
Dam
,
T.T.
,
Ainscough
,
R.
,
Palfreyman
,
R.
,
Cao
,
L.
,
Harrison
,
M.
, et al
A snapshot of microbial diversity and function in an undisturbed sugarcane bagasse pile
.
2020
;
1
16
.
68.
Mustafa
,
G.
Biotechnological applications of sugarcane bagasse and sugar beet molasses
.
2020
;
1
13
.
69.
Kim
,
M.
,
Jee
,
S.
,
Sung
,
J.
,
Kadam
,
A.A.
Supermagnetic Sugarcane Bagasse Hydrochar for EnhancedOsteoconduction in Human Adipose Tissue-Derived Mesenchymal Stem Cells
.
Nanomaterials
2020
,
10
(
9
),
1793
;
This content is only available via PDF.
You do not currently have access to this content.