East Java is the largest sugarcane development area dominated by dry land contributing to almost half of the total national sugar production in Indonesia. The water needs of sugarcane on dry land are met by rainfall. The water availability from rainfall in dry land affects crop evapotranspiration describing the actual water use by crops. The actual water use determines the crop yield. This study aimed to determine the correlation concerning sugarcane evapotranspiration and rainfall in the area of East Java. The climatological data were collected from the meteorological station nearby the sugarcane area, consisting of the minimum and maximum air temperature, air humidity, sunshine duration, wind speed, and rainfall. The crop evapotranspiration of sugarcane was estimated by multiplying potential evapotranspiration and crop coefficient. Potential evapotranspiration describing evapotranspiration at maximum available water conditions was estimated using the FAO Penman-Monteith method. The rainfall used in the analysis was rainfall effectively used by the crop. Research results show that crop evapotranspiration by sugarcane (y) has a positive linear relationship with effective rainfall (x) expressed by the equation y=0.5018x+600.95 (R²= 0.899). The mean effective rainfall is 1,104.2mm and the crop evapotranspiration is 1,155.0mm. The crop evapotranspiration is useful in assessing and planning the expansion of new areas of sugarcane to minimize yield reduction. Further analysis of crop evapotranspiration can be done for other areas of sugarcane.

1.
Badan Pusat Statistik
,
Indonesian Sugarcane Statistics 2020
(
BPS
,
Jakarta
,
2021
) pp.
1
102
.
3.
V.
Perin
,
P.C.
Sentelhas
,
H.B.
Dias
, and
E.A.
Santos
,
Agric. Water Manag.
220
,
50
58
(
2019
).
4.
M.
Carr
and
J.
Knox
,
Exp. Agric.
47
,
1
25
(
2011
).
5.
D.N.A.
Cabral
,
J.A.R.
Nunes
,
P.D.S.
Cabral
,
J.
Zuchi
,
A.J.
Raizer
, and
T.O.M.
De Paula
,
Genet. Mol. Res.
16
,
1
11
(
2017
).
6.
G.V.
Amulya
,
C.
Kumar
, and
V.
Patil
,
Eng.
7
(
6
):
6786
6794
(
2020
).
7.
A.
Palanisamy
,
P.
Ponnuchakkammal
,
T.
Gurusamy
, and
B.
Kannan
,
Madras Agric. J.
108
,
280
286
(
2021
).
8.
J.
Doorenbos
and
W.O.
Pruitt
,
Crop Water Requirements
(
FAO Irrigation and Drainage Paper
,
Rome
,
1977
), pp.
1
144
.
9.
FAO
,
Crop Yield Response to Water Sugarcane
(
Food and Agriculture Organization of The United Nations
,
Rome
,
2012
), pp.
174
181
.
10.
R.
Allan
,
L.
Pereira
, and
M.
Smith
,
Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements
(
FAO Irrigation and Drainage Paper
,
Rome
,
1998
) pp.
1
300
.
11.
S.
Singta
,
A.
Chidthaisong
,
D.
Komori
,
V.
Surapioith
, and
W.
Kim
,
J. Sustain. Energy Environ.
9
,
1
9
(
2018
).
12.
O.M.R.
Cabral
,
H.R.
Rocha
,
J.H.
Gash
,
M.A.V.
Ligo
,
J.D.
Tatsch
,
H.C.
Freitas
, and
E.
Brasilio
,
GCB Bioenergy
4
,
555
565
(
2012
).
13.
S.K.
Dingre
and
S.D.
Gorantiwar
,
Agric. Water Manag.
232
,
1
8
(
2020
).
14.
R.C.
Bispo
,
F.B.T.
Hernandez
,
I.Z.
Gonçalves
,
C.M.U.
Neale
, and
A.H.C.
Teixeira
,
Agric. Water Manag.
271
,
1
10
(
2022
).
15.
I.
Teodoro
,
J.D.
Neto
,
L.A.
De Holanda
,
G.D. Sampaio
Neto
,
J.L.
De Souza
,
G.V.D.S.
Barbosa
, and
G.B.
Lyra
,
Eng. Agric.
35
,
76
88
(
2015
).
16.
A.A.
Adetoro
,
S.
Abraham
,
A.L.
Paraskevopoulos
,
E.
Owusu-Sekyere
,
H.
Jordaan
, and
I.R.
Orimoloye
,
Groundw. Sustain. Dev.
11
,
1
18
(
2020
).
17.
B.C.
Gurski
,
J.L. Moretti
de Souza
,
E.
Gerstemberger
, and
R.A.
de Oliveira
,
Acta Agron.
69
,
136
144
(
2020
).
18.
R.P.
Wiedenfeld
,
Agric. Water Manag.
43
,
173
182
(
2000
).
19.
S.M.
Zingaretti
,
F.A.
Rodrigues
,
J.P.
da Graga
, and
M.V.
Lourenco
,
Additional Intech.
13
,
255
276
(
2012
).
20.
G.
Kingston
, "
Benchmarking yield of sugarcane from estimates of water use
," in
Proceedings Australian Society of Sugarcane Technology
, (
Australian Society of Sugarcane Technologies
,
Australia
,
1994
), pp.
201
209
.
21.
K.
Mohanraj
,
G.
Hemaprabha
, and
S.
Vasantha
,
Agric. Water Manag.
255
,
1
11
(
2021
).
22.
L.C.
Santos
, et al
Agric. Water Manag.
221
,
322
333
(
2019
).
23.
Q.
Zu
, et al
Eur. J. Agron.
92
,
72
83
(
2018
).
24.
R.P.
Fernandes
,
R.W. da C.
Silva
,
L.F.
Salemi
,
T.M.B.
de Andrade
,
J.M.
de Moraes
,
A.I.J.M.V.
Dijk
, and
L.A.
Martinelli
,
J. Hydrol.
551
,
532
539
(
2017
).
25.
A.D.
Baez-Gonzalez
,
J.R.
Kiniry
,
M.N.
Meki
,
J.R.
Williams
,
M. Alvarez
Cilva
,
J.L. Ramos
Gonzalez
, and
A. Magallanes
Estala
,
J. Agron. Crop Sci.
204
,
515
528
(
2018
).
26.
H.
Guo
, et al
Smart Agric. Technol.
1
,
1
15
(
2021
).
27.
M. dos S.
Vianna
,
D.S.P.
Nassif
,
K. dos Santos
Carvalho
, and
F.R.
Marin
,
Comput. Electron. Agric.
172
,
1
30
(
2020
).
28.
Badan Pusat Statistik
.
Badan Pusat Statistik Kabupaten Sidoarjo
[Internet].
Jakarta
:
Badan Pusat Statistik
;
2018
[cited 2022 Nov 10]. Available from: https://sidoarjokab.bps.go.id.
29.
Badan Pusat Statistik
.
Badan Pusat Statistik Kabupaten Situbondo
[Internet].
Jakarta
:
Badan Pusat Statistik
;
2016
[cited 2022 Nov 10]. Available from: https://situbondokab.bps.go.id.
This content is only available via PDF.
You do not currently have access to this content.