Satellites (topological powers) of the famous figure-eight orbit are special periodic solutions of the planar three-body problem. In this paper we use a modified Newton’s method based on the Continuous analog of Newton’s method and high precision arithmetic for a purposeful numerical search of new satellites of the figure-eight orbit. Over 700 new satellites are found, including 76 new linearly stable ones. 7 of the newly found linearly stable satellites are choreographies. The linear stability is checked by a high precision computing of the eigenvalues of the monodromy matrices. The initial conditions of all found solutions are given with 150 correct decimal digits.

1.
M.
Shuvakov
and
V.
Dmitrashinovich
,
Three classes of newtonian three-body planar periodic orbits
,
Physical Review Letters
110
(
11
),
114301
(
2013
).
2.
M.
Shuvakov
and
V.
Dmitrashinovich
,
A guide to hunting periodic three-body orbits
,
American Journal of Physics
82
(
6
),
609
619
(
2014
).
3.
L. Xiao
Ming
and
S.
Liao
,
More than six hundred new families of newtonian periodic planar collisionless three-body orbits
,
Science China Physics, Mechanics and Astronomy
60
(
12
),
1
7
(
2017
).
4.
I.
Hristov
,
I.
Puzynin
et al, "
Newton’s method for computing periodic orbits of the planar three-body problem
,” e-printarXiv:2111.10839 (
2021
).
5.
I. V.
Puzynin
et al,
The generalized continuous analog of Newton’s method for the numerical study of some nonlinear quantum-field models
,
Physics of Particles and Nuclei textbf
30
(
1
),
87
110
(
1999
).
6.
C.
Moore
,
Braids in classical gravity
,
Phys. Rev. Lett.
70
(
24
),
3675
3679
(
1993
).
7.
R.
Montgomery
and
A.
Chenciner
,
A remarkable periodic solution of the three-body problem in the case of equal masses
,
Ann. Math.
152
,
881
901
(
2000
).
8.
C.
Simo
, “
Dynamical properties of the figure eight solution of the threebody problem
,”
Celestial Mechanics, dedicated to Donald Saari for his 60th Birthday
292
,
209
228
(
2002
).
9.
M.
Shuvakov
,
Numerical search for periodic solutions in the vicinity of the figure-eight orbit: slaloming around singularities on the shape sphere
,
Celestial Mechanics and Dynamical Astronomy
119
(
3
),
369
377
(
2014
).
10.
M.
Shuvakov
and
M.
Shibayama
,
Three topologically nontrivial choreographic motions of three bodies
,
Celestial Mechanics and Dynamical Astronomy
124
(
2
),
155
162
(
2016
).
11.
A.
Abad
,
R.
Barrio
, and
A.
Dena
,
Computing periodic orbits with arbitrary precision
,
Physical Review E
84
(
1
),
016701
(
2011
).
12.
J.
Demmel
,
Applied Numerical Linear Algebra
(
Society for Industrial and Applied Mathematics
,
1997
).
13.
R.
Barrio
et al,
Breaking the limits: the taylor series method
,
Applied Mathematics and Computation
217
(
20
),
7940
7954
(
2011
).
14.
R.
Barrio
,
Sensitivity analysis of odes/daes using the taylor series method
,
SIAM Journal on Scientific Computing
27
(
6
),
1929
1947
(
2006
).
15.
A.
Jorba
and
M.
Zou
,
A software package for the numerical integration of odes by means of high-order Taylor methods
,
Experimental Mathematics
14
(
1
),
99
117
(
2005
).
16.
V.
Dmitrashinovich
,
A.
Hudomal
,
M.
Shibayama
, and
A.
Sugita
, “
Linear stability of periodic three-body orbits with zero angular momentum and topological dependence of Kepler’s third law: a numerical test
,”
Journal of Physics A: Mathematical and Theoretical
51
(
31
),
315101
(
2018
).
17.
Three-body gallery
, http://three-body.ipb.ac.rs/sequences.php, accessed: 2022-09-01.
18.
Roberts
and
E.
Gareth
,
Linear stability analysis of the figure-eight orbit in the three-body problem
,
Ergodic Theory and Dynamical Systems
27
(
6
),
1947
1963
(
2007
).
19.
Advanpix llc
.,
Multiprecision computing toolbox for Matlab, version 4.8.8.14711
, http://www.advanpix.com/, accessed: 2022-09-01.
20.
Matlab version 9.12.0.1975300 (r2022a) update 3, The mathworks, inc., natick, massachusetts
,
2021
, https://mathworks.com, accessed: 2022-09-01.
21.
R.
Montgomery
,
The n-body problem, the braid group, and action-minimizing periodic solutions
,
Nonlinearity
11
(
2
),
363
(
1998
).
22.
821 satellites of figure-eight orbit computed with 150 correct digits
,” http://db2.fmi.uni-sofia.bg/3body821/, accessed: 2022-09-01.
23.
Nestum cluster
,” http://hpc-lab.sofiatech.bg/, accessed: 2022-09-01.
24.
Heterogeneous platform “hybrilit”
,” http://hlit.jinr.ru/, accessed: 2022-09-01.
25.
The gnu multiple precision arithmetic library
,” https://gmplib.org/, accessed: 2022-09-01.
This content is only available via PDF.
You do not currently have access to this content.