We consider two-type branching stochastic processes with offspring distributions from the power series distribution family. The estimation of the individual parameters is an important part of the statistical inference for branching processes. Models of estimation of multitype branching processes require a large amount of data that cannot always be observed and the the size of the population is often insufficient. The use of approximation methods like the machine learning approach to parameter estimation, allows us to obtain an algorithmic estimation in the presence of hidden data. This gives us a motivation to approach the parametric statistical estimation in the multitype branching setting using machine learning algorithms. We consider a Hamiltonian Monte Carlo algorithm to algorithmically estimate the parameters of the individual distribution of a two-type branching process and compare it to the Gibbs sampler. As a special case we consider the branching process with a multivariate Poisson offspring distribution. Examples are provided, as well as a software implementation, illustrated by simulations and computational results in Python.

1.
L. J. S.
Allen
,
Stochastic Population and Epidemic Models: Persistence and Extinction
(
Springer International Publishing
,
2015
).
2.
S.
Asmussen
,
H.
Herring
,
Branching Processes
(
Birkhauser
,
Boston
,
1983
).
3.
K.B.
Athreya
,
P.E.
Ney
,
Branching Processes
(
Springer-Verlag
,
Berlin
,
1972
).
4.
T.
Chen
,
E.
Fox
,
C.
Guestrin
, “
Stochastic gradient hamiltonian Monte Carlo
,” in
International conference on machine learning
, pp.
1683
1691
(
2014
).
5.
S.
Geman
,
D.
Geman
,
Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images
’,
IEEE Trans. Pattern Anal. Mach. Intell.
6
,
721
741
(
1984
).
6.
T.
Gerstenkorn
,
On multivariate power series distributions
,
Revue Roumaine de Mathématiques Pures et Appliquées
26
,
247
266
(
1981
).
7.
M.
González
,
C.
Gutiérrez
,
R.
Martinez
,
Parametric Bayesian inference for Y-linked two-sex branching models
,
Stat. Comput.
23
,
727
741
(
2013
).
8.
M.
González
,
R.
Gutiérrez
,
R.
Martínez
,
I.M.
del Puerto
,
Bayesian inference for controlled branching processes through MCMC and ABC methodologies, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales
.
Serie A. Mathematicas
107
,
459
473
(
2013
).
9.
M.
González
,
J.
Martín
,
R.
Martínez
,
M.
Mota
,
Non-parametric Bayesian estimation for multitype branching processes through simulation-based methods
,
Computational Statistics & Data Analysis
52
,
1281
1291
(
2008
).
10.
M.
González
,
C.
Minuesa
,
I.M.
del Puerto
,
Maximum likelihood estimation and Expectation-Maximization algorithm for controlled branching processes
,
Computational Statistics & Data Analysis
93
C,
209
227
(
2016
).
11.
M.
González
,
I.M.
del Puerto
,
R.
Martínez
,
M.
Mota
, in Workshop on Branching Processes and Their Applications,
Lecture Notes in Statistics
,
197
,
Springer Verlag
(
2010
).
12.
S.
Ikeda
,
Acceleration of the EM algorithms
,
Systems and Computers in Japan
31
(
2
),
10
18
(
2000
).
13.
T.E.
Harris
,
The Theory of Branching Processes
(
Springer-Verlag
,
Berlin
,
1963
).
14.
M. D.
Hoffman
,
A.
Gelman
et al,
The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo
,
J. Mach. Learn. Res.
,
15
(
1
),
1593
1623
(
2014
).
15.
P.
Jagers
,
Branching Processes with Biological Applications
(
Wiley
,
London
,
1975
).
16.
N.
Johnson
,
S.
Kotz
,
N.
Balakrishtnan
,
Discrete Multivariate Distributions
(
Wiley
,
1997
).
17.
C.G.
Khatri
,
On multivariate contagious distributions
,
Sankhyia, Series B
33
,
197
216
(
1971
).
18.
S.
Kocherlakota
,
K.
Kocherlakota
,
Bivariate Discrete Distributions
(
Marcel Dekker Inc
.,
New York
,
1992
).
19.
A.N.
Kolmogorov
,
N.A.
Dmitriev
,
Branching random processes
,
Dokl. Akad. Nauk (Proc. Acad. Sci. USSR)
56
,
7
10
(
1947
). [in Russian]
20.
A.N.
Kolmogorov
,
B.A.
Sevastyanov
,
Calculation of final probabilities of branching random processes
,
Dokl. Akad. Nauk (Proc. Acad. Sci. USSR)
56
,
783
786
(
1947
). [in Russian]
21.
S.
Mohamed
,
M.
Rosca
,
M.
Figurnov
,
A.
Mnih
,
Monte Carlo Gradient Estimation in Machine Learning
,
J. Mach. Learn. Res.
21
(
132
),
1
62
(
2020
).
22.
N. M.
Radford
, “MCMC using Hamiltonian dynamics,” in
Handbook of Markov chain Monte Carlo
,
S.
Brooks
,
A.
Gelman
et al
(Eds) (
Chapman and Hall
,
2011
).
23.
M.
Michiko
and
H.
Suzuki
,
Hamiltonian Monte Carlo with explicit, reversible, and volume-preserving adaptive step size control, SIAM Letters
,
The Japan Society for Industrial and Applied Mathematics
9
,
33
36
(
2017
).
24.
G.P.
Patil
, “On multivariate generalized power series distribution and its applications to the multinomial and negative multinomial,” in
Clussical und Contugious Discrete Distributions
,
G. P.
Patil
(Ed), Proceedings of International Symposium at McGill University on August 15-20, pp.
183
194
, Calcutta: Statistical Publishing Society (
Pergamon Press
,
Oxford
,
1965
).
25.
B.A.
Sevastyanov
,
Branching Processes
(
Nauka
,
Moscow
). [in Russian] (
1971
)
26.
A.
Staneva
, A.,
V.
Stoimenova
,
Statistical estimation in Branching Processes with Bivariate Poisson offspring distribution
,
Pliska Stud. Mat.
24
,
73
88
(
2015
).
27.
S.
Thomas
,
W.
Tu
,
Learning Hamiltonian Monte Carlo in R
.,
The American Statistician
75
(
4
),
403
413
(
2021
).
28.
L.
Tierney
,
A.
Mira
,
Some adaptive Monte Carlo methods for Bayesian inference
,
Statistics in medicine (Wiley Online Library)
18
(
17–18
),
2507
2515
(
1999
).
29.
A. Yu.
Yakovlev
,
N. M.
Yanev
,
Transient Processes in Cell Proliferation Kinetics
(
Springer Verlag
,
Berlin
,
1989
).
30.
A. Yu.
Yakovlev
,
N.M.
Yanev
,
Relative frequencies in multitype branching processes
,
Ann. Appl. Probab.
19
(
1
),
1
14
(
2009
).
31.
A. Yu.
Yakovlev
,
N. M.
Yanev
,
Limiting distributions in multitype branching processes
,
Stochastic Analysis and Applications
28
(
6
),
1040
1060
(
2010
).
32.
D.
Zou
,
Q. Gu.
Quanquan
, “
On the convergence of Hamiltonian Monte Carlo with stochastic gradients
,” in
International Conference on Machine Learning
, pp.
13012
13022
(
2021
).
33.
D.
Zou
,
P.
Xu
,
Q.
Gu
,
Stochastic gradient Hamiltonian Monte Carlo methods with recursive variance reduction
,
Advances in Neural Informa-tion Processing Systems
, Vol.
32
(
2019
).
This content is only available via PDF.
You do not currently have access to this content.