The introduction of radiochromic films has solved some of the problems associated with conventional 2D radiation detectors. EBT-XD radiochromic film was introduced as the next generation of EBT, EBT2 and EBT3 films while maintaining the composition of the active layer based on polydiacetylene. Precise knowledge of the absorption spectra of these films can help develop optical densitometers more suitable for clinical use. The objective of this work is to present an analysis of the net absorption spectra of EBT-XD radiochromic films by means of Lorentz decomposition. The net absorption spectra of the EBT-XD films showed the two characteristic absorption bands of the active layer component, based on polydiacetylene (PCDA), centered at 636±1 nm and 585±1 nm, also reported for the EBT models, EBT2 and EBT3. The band reported at 560±1 nm was also observed. Furthermore, the net absorption spectra of the EBT-XD films show a series of bands for the wavelength range 400 to 540 nm. These bands have already been reported for the EBT3 film model, the authors attributed this behavior to a possible interference effect characteristic of a Fabri-Perot cavity formed by the symmetric structure of the films. The Lorentz decomposition of the net absorption spectrum of the EBT-XD films showed the presence of 12 Lorentz functions, unlike the absorption spectrum of the EBT and EBT2 radiochromic film models, which decomposes into 8 Lorentz functions. Lorentz functions are commonly used when modeling optical transitions between electron bands.

1.
A.
Niroomand-Rad
,
S.T.
Chiu-Tsao
,
M.P.
Grams
,
D.F.
Lewis
,
C.G.
Soares
,
L.J.
Van Battum
,
I.J.
Das
,
S.
Trichter
,
M.W.
Kissick
,
G.
Massillon_JL
,
P.E.
Alvarez
&
M.F.
Chan
(
2020
).
Report of AAPM task group 235 radiochromic film dosimetry: an update to TG-55
.
Medical Physics
,
47
(
12
),
5986
6025
.
2.
K.
Yasui
,
T.
Toshito
,
C.
Omachi
,
C.
Omachi
,
K.
Hayashi
,
H.
Kinou
,
M.
Katsurada
,
N.
Hayashi
,
H.
Ogino
(
2019
). Dosimetric verification of IMPT using a commercial heterogeneous phantom.
Journal of Applied Clinical Medical Physics
20
:
114
120
. R. C. Mikkelson (private communication).
3.
M.
Maerz
,
P.
Mittermair
,
A.
Krauss
,
O.
Koelbl
,
B.
Dobler
(
2016
).
Iterative Metallartefakt Reduktion verbessert die Genauigkeit der Dosisberechnung: Phantomstudie mit Zahnimplantaten
.
Strahlentherapie und Onkologie
192
:
403
413
.
4.
H.
Miura
,
S.
Ozawa
,
F.
Hosono
,
N.
Sumida
,
T.
Okazue
,
K.
Yamada
,
Y.
Nagata
(
2016
).
Gafchromic EBT-XD film: Dosimetry characterization in high-dose, volumetric-modulated arc therapy
.
Journal of Applied Clinical Medical Physics
17
:
312
322
.
5.
A.
Nobah
,
S.
Aldelaijan
,
S.
Devic
,
N.
Tomic
,
J.
Seuntjens
,
M.
Al-Shabanah Moftah
. (
2014
). Radiochromic film based dosimetry of image-guidance procedures on different radiotherapy modalities.
Journal of Applied Clinical Medical Physics
15
:
229
239
. R. C. Mikkelson (private communication).
6.
V.C.
Borca
,
Pasquino
M.
,
Russo
G
,
Grosso
P.
,
Cante
D.
,
Sciacero
P.
,
Girelli
G.
,
La Porta
M.R.
,
Tofani
S.
(
2013
).
Dosimetric characterization and use of GAFCHROMIC EBT3 film for IMRT dose verification
.
Journal of Applied Clinical Medical Physics
14
:
158
171
.
7.
Ashland
. “
EBT-XD specification and userguide
available at <http://www.gafchromic.com/documents/EBTXD_Specifications_Final.pdf> (Accessed August 2021).
8.
E.Y.
León-Marroquín
,
D.
Mulrow
,
A.
Darafsheh
,
R.
Khan
(
2019
).
Response characterization of EBT-XD radiochromic films in megavoltage photon and electron beams
.
Medical Physics
46
:
4246
4256
. R. C. Mikkelson (private communication).
9.
L.E.
Reinstein
,
G.R.
Gluckman
,
H.I.
Amols
(
1997
).
Predicting optical densitometer response as a function of ligth sourse characteristics for radiochromic film dosimetry
.
Medical physics
24
:
1935
1942
.
10.
A.
Niroomand-Rad
C.R.
Blackwel
,
B.M.
Coursey
,
K.P.
Gall
,
J.M.
Galvin
,
W.L.
McLaughlin
,
A.S.
Meigooni
,
R.
Nath
,
J.E.
Rodgers
,
C.G.
Soares
(
1998
).
Radiochromic film dosimetry: Recommendations of AAPM Radiation Therapy Committee Task Group 55
.
Medical Physics
25
(
11
),
2093
2115
.
11.
S.
Devic
,
N.
Tomic
,
Z.
Pang
,
J.
Seuntjens
,
E.B.
Podgorsak
,
C.G.
Soares
(
2007
).
Absorption spectroscopy of EBT model GAFCHROMICTM film
.
Medical Physics
34
:
112
118
.
12.
M.J.
Butson
,
T.
Cheung
,
P.K.N.
Yu
,
H.
Alnawaf
(
2009
).
Dose and absorption spectra response of EBT2 Gafchromic film to high energy x-rays
.
Australasian Physical & Engineering Sciences in Medicine
32
:
196
202
.
13.
E.Y.
León-Marroquín
,
M.A.
Camacho-López
,
O.A.
García-Garduño
,
J.A.
Herrera-González
J.E.
Villarreal-Barajas
,
R.
Gutiérrez-Fuentes
R.
Contreras-Bulnes
(
2016
).
Spectral analysis of the EBT3 radiochromic film irradiated with 6 MV X-ray radiation
.
Radiation Measuremets
89
:
82
88
.
14.
M.A.
Camacho
,
A.K.
Kar
,
B.S.
Wherrett
,
M.
Bakarezos
,
R.
Rangel-rojo
,
S.
Yamada
,
H.
Matsuda
H.
Kasai
,
H.
Nakanishi
(
2005
).
All-optical switching potentiality in Fabry-Perot devices containing poly-DCHD
.
Optics Communications
251
:
376
387
.
15.
S.
Devic
,
S.
Aldelaijan
,
H.
Mohammed
,
N.
Tomic
,
L.H.
Liang
(
2010
).
Absorption spectra time evolution of EBT-2 model GAFCHROMIC film
.
Medical physics
37
:
2207
2214
.
This content is only available via PDF.
You do not currently have access to this content.