Cardiovascular Disease (CVD) or cardiac arrest refers to several diseases affecting the heart and has become a leading cause of death in the last few decades. In the health industry, machine learning (ML) improved the efficiency of predictive models. Using the Internet of Things (IoT) makes it possible to predict appropriate medical treatments and lifestyle changes early on. This paper describes supervised machine learning classifiers for detecting significant features which predict cardiovascular disease with great accuracy. Over-sampling is a method for learning from unbalanced data that we propose in this work. Different classification techniques are incorporated into our prediction model. An analysis of K-Nearest Neighbor, Naive Bayes, Logistic Regression, and Decision Trees techniques are performed to determine which ML approach performs the best on heart disease datasets. The accuracy percentage for the Decision Tree using SMOTE oversampling technique is 91.26, this predicts heart disease with the maximum probability.

1.
Mohan
,
S.
,
C.
Thirumalai
, and
G.
Srivastava
,
IEEE Access
,
2019
.
7
: p.
81542
81554
.
2.
Shah
,
D.
,
S.
Patel
, and
S.K.
Bharti
,
SN Computer Science
,
2020
.
1
(
6
): p.
1
6
.
3.
Katarya
,
R.
and
S.K.
Meena
,
Health and Technology
,
2021
.
11
(
1
): p.
87
97
.
4.
Ali
,
M. M.
,
Paul
,
B. K.
,
Ahmed
,
K.
,
Bui
,
F. M.
,
Quinn
,
J. M.
, &
Moni
,
M. A.
,
Computers in Biology and Medicine
,
2021
.
136
: p.
104672
.
5.
Ishaq
,
A.
,
Sadiq
,
S.
,
Umer
,
M.
,
Ullah
,
S.
,
Mirjalili
,
S.
,
Rupapara
,
V.
, &
Nappi
,
M
,
IEEE Access
9
(
2021
):
39707
39716
.
6.
Golande
,
A.
and
T. Pavan
Kumar
,
International Journal of Recent Technology and Engineering (IJRTE)
,
2019
.
8
(
1
): p.
944
950
.
7.
Reddy
K.V.
,
Elamvazuthi
I
,
Aziz
A.A.
,
Paramasivam
S
,
Chua
H.N.
,
Pranavanand
S
,
Applied Sciences
,
2021
.
11
(
18
): p.
8352
.
8.
Alotaibi
F.S.
,
International Journal of Advanced Computer Science and Applications
,
2019
.
10
(
6
): p.
261
268
.
9.
Ananey-Obiri
D
and
E.
Sarku
, “
Predicting the Presence of Heart Diseases using Comparative Data Mining and Machine Learning Algorithms
,”
International Journal of Computer Applications
,
2020
.
176
: p.
17
21
.
10.
Chen
M
,
Hao
Y
,
Hwang
K
,
Wang
L
,
Wang
L
,
IEEE Access
,
2017
.
5
: p.
8869
8879
.
11.
Kodati
S
,
Global Journal of Computer Science and Technology
,
2018
.
18
(
C1
): p.
17
21
.
12.
Kumar
N.K.
,
Sindhu
G.S.
,
Prashanthi
D.K.
,
Sulthana
A.S.
, in
2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS)
.
2020
. p.
15
21
.
IEEE
.
14.
Parkka
J
,
Ermes
M
,
Korpipaa
P
,
Mantyjarvi
J
,
Peltola
J
, &
Korhonen
,
I.
(
2006
),
IEEE Transactions on information technology in biomedicine
,
10
(
1
),
119
128
.
15.
Park
H.A.
, (
2013
),
Journal of Korean Academy of Nursing
,
43
(
2
),
154
164
.
16.
Dwivedi
A.K.
,
Neural Computing and Applications
,
2018
.
29
(
10
): p.
685
693
.
17.
Sajja
G.S.
,
Mustafa
M
,
Phasinam
K
,
Kaliyaperumal
K
,
Ventayen
R.J.
,
Kassanuk
T.
in
2021 Second International Conference on Electronics and Sustainable Communication Systems (ICESC)
.
2021
. p.
1664
1669
.
IEEE
.
18.
Jayashree
R
, and
Vaithyasubramanian
S
, (
2021
). In
Handbook of Research on Innovations and Applications of A.I., IoT, and Cognitive Technologies
(pp.
258
276
).
IGI Global
.
19.
Chavan
S.C.
and
Chavan
,
A
, (
2017
, June). In
International Conference on Intelligent Computing and Control Systems (ICICCS)
(pp.
1135
1140
).
IEEE
.
This content is only available via PDF.
You do not currently have access to this content.