We analyzed dose rate data of space neutron and gamma radiation during several flight with various destinations, i.e. Jakarta – Kupang, Kupang – Jakarta, Jakarta – Pontianak, and Pontianak – Jakarta. Data were collected using personal radiation dosimeter (RadEye for neutron and Dosicard for gamma radiation) during flights from take off until landing at the destination airports. As expected, the higher the aircraft from sea level, the radiation received are higher also, but the behaviour of the neutron and gamma radiation are different. The neutron radiation received are more erratic compared with that of the gamma radiation. We found the correlation between the height of the aircraft and neutron and gamma radiation dose rates with correlation coeficient values of 0.89, 0.86, 0.90, 0.87 respectively for neutron radiation and 0.91, 0.95, 0.84, 0.88 respectively for gamma radiation. We found the empirical relations between latitude and dose rates of neutron and gamma radiation in the height of 35.000 feet from the sea level as Dn = −0.034 Lat + 1.036 for neutron dose rates and Dg = −0.027 Lat + 0.636 for gamma radiation dose rates.

1.
J.F.
Ziegler
,
Terrestrial Cosmic Rays
,
IBM Journal of Research and Development
, Vol
40
No
1
(
1996
)
2.
L.
Dorman
,
Cosmic Rays in the Earth's Atmosphere and Underground
(
Kluwer Academic Publishers
,
Netherlands
,
2004
), ISBN 1402020716
3.
I.G.
Usoskin
,
Kovaltsov
,
I. G.
,
Cosmic ray induced ionization in the atmosphere: full modeling and practical applications
.
J. Geophys. Res.
111
,
D21206
(
2006
)
4.
C.G.J.
Shouop
,
M.N.
Moyo
,
E.J.N.
Mekongtso
,
K.
Cho
,
D.
Strivay
,
Radiological protection requirements with regard to cosmic ray exposure during air travel
,
Eur. Phys. J. Plus
135
:
438
(
2020
),
5.
M.A.
Shea
and
D.F.
Smart
,
The Influence of the Changing Geomagnetic Field on Cosmic Ray Measurements
,
J. Geomag. Geoelectr.
,
42
,
1107
1121
(
1990
)
6.
C.
Dyer
,
F.
Lei
,
Monte Carlo calculations of the influence on aircraft radiation environments of structures and solar particle events
.
IEEE Trans. Nuclear Sci.
48
,
1987
1995
(
2001
).
7.
C.J.
Mertens
,
J.W.
Wilson
,
S.R.
Blattnig
,
B.T.
Kress
,
J.W.
Norbury
,
M.J.
Wiltberger
,
S.C.
Solomon
,
W.K.
Tobiska
,
J.J.
Murray
,
Influence of Space Weather on Aircraft Ionizing Radiation Exposure
,
46th AIAA Aerospace Sciences Meeting and Exhibit, Reno
,
Nevada
(
2008
)
8.
J.F.
Bottollier-Depois
,
P.
Beck
,
B.
Bennett
,
L.
Bennett
,
R.
Bütikofer
,
I.
Clairand
,
L.
Desorgher
,
C.
Dyer
,
E.
Felsberger
,
E.
Flückiger
,
A.
Hands
,
P.
Kindl
,
M.
Latocha
,
B.
Lewis
,
G.
Leuthold
,
T.
Maczka
,
V.
Mares
,
M.J.
McCall
,
K.
O'Brien
,
S.
Rollet
,
W.
Rühm
,
F. dan
Wissmann
,
Comparison of codes assessing galactic cosmic radiation exposure of aircraft crew
,
Radiation Protection Dosimetry
, Vol.
136
, No.
4
, pp.
317
323
(
2009
), doi:
9.
Q.F.
Goodhead
,
Track structure and the quality factor for space radiation cancer risk
, (
2018
), https://three.jsc.nasa.gov/articles/Track_QF_Goodhead.pdf
10.
E.M.
Kennedy
,
D.R.
Powell
,
Z.
Li
,
J.S.K.
Bell
,
B.G.
Barwick
B. G.
Feng
,
H.
McCrary
,
B.
Dwivedi
,
J.
Kowalski
,
W.S.
Dynan
,
K.N.
Conneely
,
P.M.
Vertino
, P. M.
Galactic cosmic radiation induced persistent epigenome alterations relevant to human lung cancer
, www.nature.com/scientificreports (
2018
)
11.
W.
Friedberg
,
K.
Copeland
, F.
E
,
Duke
,
J.S.
Nicholas
,
E.B. Darden
Jr
,
K. O'Brien
III
,
Radiation Exposure of Aircrews
,
Occupational Medicine: State of the Art Reviews
17
(
2
):
293
309
(
2002
)
12.
C.J.
Mertens
,
Cosmic ray atmospheric transport and dosimetry
,
European Research Course on Atmosphere
(
2010
)
13.
C.J.
Mertens
,
M.M.
Meier
,
S.
Brown
,
R.B.
Norman
,
X.
Xu
,
NAIRAS aircraft radiation model development, dose climatology, and initial validation
,
Space Weather
, vol.
11
,
603
635
(
2013
), doi:, 201
This content is only available via PDF.
You do not currently have access to this content.