Amphibious aircraft is one the suitable transportation for the State of Indonesia, which consists of many islands where not all islands have aircraft runaway facilities. Designing an amphibious aircraft takes a long time and contradicts many aerodynamic theories. Therefore, using an existing aircraft design, a floater or pontoons will be added under it so that it can take off from the water surface. The addition of a floater can affect the aerodynamic characteristics of an airplane. One way to predict the aerodynamic characteristics of an airplane is to use Computational Fluid Dynamics (CFD) method with ANSYS software version 2021 R2. The boundary conditions used are when the aircraft with a floater (type 1) or without a floater (type 2) is in a cruise flight condition. The results of CFD found that the higher the angle of attack, the higher the aerodynamic coefficient. The lift coefficients of type 1 and type 2 models have similar slopes and graphic patterns, even close to each other. However, at the angle of attack of 20 degrees, there are differences and a significant decrease in the lift coefficient values in stall conditions. In comparison, the drag coefficient for the type 1 model is greater than the type 2 model, although it has the same pattern in the form of a parabola. The minimum drag coefficient (Cdmin) value for both models is at the angle of attack of -30 degrees. The value of the moment coefficient of the type 1 model is lower than that of the type 2 model, so adding a floater reduces the pitching moment. As a result, the type 1 model is more stable. The average difference in lift coefficient, drag coefficient, and moment coefficient, respectively, is ±3%, ±30%, and ±37%.

1.
B. L. and K. S
., "
The Validity of 2D Numerical Simulations of Vortical Structures Around a Bridge Deck
,"
Mathematical and Computer Modelling
, Vol.
37
, pp.
795
828
, (
2003
).
2.
S.
Chapra
and
R.
Canale
,
Numerical Method For Engineers
,
Mc Graw - Hill Book Company
, (
1989
).
3.
S.
Salim
, C. S., and C., "
Wall y+ Strategy for Dealing with Wall-Bounded Turbulent Flows
,"
Proc. Intl. MultiCof. of Eng. Comp. Sci
Vol
II
, IMECS, (
2009
).
4.
F.
Tuaka
,
Dasar-Dasar CFD Menggunakan Fluent
,
Bandung: Informatika
, (
2008
).
5.
ANSYS Inc
.,
ANSYS Fluent Theory Guide Release 15.0, Southpointe
,
Canonsburg
:
ANSYS Inc
., (
2013
).
6.
A. B.
Kasim
and
D. S. R. A.
Zaidee
, "
Validation of Computational Fluid Dynamics Technique for Turbulent Wind Flow Approach, Bluff Two-Dimensional Body
,"
International Journal of Science and Research (IJSR),
pp.
1361
1369
, (
2017
).
7.
M. F, M. L, and D. M
, "
The Finite Volume Method in Computational Fluid Dynamics
,"
Springer International Publishing
, (
2016
).
8.
V.
Thakur
,
T.
Yadav
and D. R. B, "
Drag Optimization of Bluff Bodies using CFD for Aerodynamic Applications
,"
International Journal of Computational Engineering Research (IJCER)
Vol.
07
, pp.
25
32
, (
2017
).
9.
E.
Sazak
and
D. F.
Kurtulus
, "
Parametric Investigation of Hull Shaped Fuselage for an Amphibious UAS
," in
Ninth International Conference on Computational Fluid Dynamics (ICCFD9)
,
Istanbul, Turkey
, (
2016
).
10.
X.
Song
and
M.
Zhang
, "
Turbulent Drag Reduction Characteristics of Bionic Nonsmooth Surface With Jets
,"
Appl. Sci.
Vol.
09
Issue
23
2076
3417
, pp.
1
18
, (
2019
).
11.
J. W.
Cary
,
Preliminary Design Optimization of an Amphibious Aircraft, Auburn
,
Alabama
:
Auburn University
, (
2011
).
12.
S.
Chinvorarat
,
B.
Watjatrakul
,
P.
Nimdum
,
T.
Sangpet
, and
P.
Vallikul
, "
Takeoff Performance Analysis of a Light Amphibious Airplane
," in
The 11th International Conference on Mechanical Engineering
,
Prague
, (
2021
).
13.
L.
Wang
,
H.
Yin
,
K.
Yang
,
H.
Liu
, and
J.
Zhu
, "
Water Takeoff Performance Calculation Method for Amphibious Aircraft Based on Digital Virtual Flight
,"
Chinese Journal of Aeronautics,
pp.
3082
3091
, (
2020
).
14.
C. J.
Ejeh
,
G. P.
Akhabue
, and E. B, "
Evaluating The Influence of Unsteady Air Density to The Aerodynamics Performance of A Fixed Wing Aircraft at Different Angle of Attach Using Computational Fluid Dynamics
,"
Result in Engineering
, v.
4
, pp.
1
12
, (
2019
).
15.
X.
Duan
,
W.
Sun
, and
C.
Chen
, "
Numerical Investigation of The Porpoising Motion of a Seaplane Planning on Water With High Speeds
,"
Aerospace Science and Technology
, v.
84
, pp.
980
994
, (
2019
).
16.
Anderson
JR
and D. J,
Introduction to Flight
, 8 edition,
New York
:
The McGraww-Hill
, (
2016
).
17.
A.
Frediani
,
V.
Cipolla
and
F.
Oliviero
, "
The First Prototype of an Amphibious Prandtlpplane-Shaped Aircraft
,"
The Journal of Aerospace Science, Technology, and Systems
, V.
94
, n.
3
, pp.
195
209
, (
2015
).
18.
A. M.
Irsabudi
,
G.
Jatisukamto
and
H.
Sutjahjono
, "
Karakteristik Aerodinamika Pontoon Pesawat N219 Versi Amfibi
,"
Jurnal Stator
, Volume
2
Nomor
1
, pp.
9
13
, (
2019
).
19.
S. A.
Nugroho
,
H.
Ardianto
and
H.
Setiawan
, "
Desain Struktur Float Pesawat Amfibi
,"
Jurnal Teknik, Elektronik, Engine
Vol.
6
, No.
2
, pp.
84
91
, (
2020
).
20.
M. H.
Sadraey
,
Aircraft Performance
,
CRC Press
, (
2017
).
21.
Y.
Wahyudi
,
M.
Agung
and
Muhsin
, "
Pengaruh Distribusi Tekanan Terhadap Gaya Lift Airfoil NACA 23012 Pada Berbagai Variasi Angle of Attack
,"
Mechanical Engineering Journal,
pp.
1
15
, (
2021
).
22.
S.
Syamsuar
, "
Karakteristik Hidrodinamika dan Aerodinamika Pesawat WISE L8 Pada Saat Hydro Planing dan Mengudara Berdasarkan Perhitungan CFD
,"
Jurnal Perhubungan Udara
, Vol.
44
No.
1
, pp.
57
64
, (
2018
).
23.
S. Z.
Salsabila
and
W. A.
Widodo
, "
Studi Numerik Karakteristik Aliran Tiga Dimensi Pada Body Pesawat Tanpa Awak Jenis Cessna 182 Menggunakan Airfoil August 160 dan Penambahan Trapezoidal Winglet Variasi h/s=0,15; 0,20; 0,25 dengan Cant Angle 90 derajat
,"
Jurnal Teknik ITS
, Vol.
9
No.
2
, pp.
102
107
, (
2020
).
24.
S. N.
Rahmah
, "
Analisis Aerodinamika Aileron Pesawat N2XX dengan Metode Computational Fluid Dynamics
,"
Digital Repository Universitas Jember
,
Jember
, (
2020
).
25.
N.
Nisa
and
Sutardi
, "
Studi Numerik Karakteristik Aliran Fluida Melintasi Airfoil NASA LS-0417 yang Dimodifikasi dengan Vortex Generator
,"
Jurnal Teknik Pomits
Vol.
1
, No.
2
, pp.
1
6
, (
2012
).
26.
A. B.
Prasetiyo
,
A. A.
Azmi
,
D. S.
Pamuji
and
R. I.
Yaqin
, "
Pengaruh Perbedaan Mesh Terstruktur dan Mesh Tidak Terstruktur Pada Simulasi Sistem Pendinginan Mold Injeksi Produk Plastik
," in
Prosiding Nasional Rekayasa Teknologi Industri dan Informasi XIII
,
Yogyakarta
, (
2018
).
27.
Y. F.
Kusuma
and
A. S.
Kasman
, "
Study Wind Effect at High Building Using Computational Fluid Dynamics
,"
Jurnal of Aero Technology,
pp.
9
18
, (
2018
).
This content is only available via PDF.
You do not currently have access to this content.