False news has received attention from both the general public and the scholarly world. Such false information has the ability to affect public perception, giving nefarious groups the chance to influence the results of public events like elections. Anyone can share fake news or facts about anyone or anything for their personal gain or to cause someone trouble. Also, information varies depending on the part of the world it is shared on. Thus, in this paper, we have trained a model to classify fake and true news by utilizing the 1876 news data from our collected dataset. We have preprocessed the data to get clean and filtered texts by following the Natural Language Processing approaches. Our research conducts 3 popular Machine Learning (Stochastic gradient descent, Naïve Bayes, Logistic Regression,) and 2 Deep Learning (Long-Short Term Memory, ASGD Weight-Dropped LSTM, or AWD-LSTM) algorithms. After we have found our best Naive Bayes classifier with 56% accuracy and an F1-macro score of an average of 32%.

1.
W.
Kogan
, S.,
Moskowitz
,
T. J.
, &
Niessner
,
M.
(
2019
).
Fake news: Evidence from financial markets.
Available at SSRN, 3237763.
2.
Wong
,
J.
(
2016
).
Almost all the traffic to fake news sites is from facebook, new data show
.
The Medium.
3.
Lazer
,
D. M.
,
Baum
,
M. A.
,
Benkler
,
Y.
,
Berinsky
,
A. J.
,
Greenhill
,
K. M.
,
Menczer
,
F.
, … &
Zittrain
,
J. L.
(
2018
).
The science of fake news
.
Science
,
359
(
6380
),
1094
1096
.
4.
Asr
,
F. T.
, &
Taboada
,
M.
(
2019
).
Misinfotext: a collection of news articles, with false and true labels.
5.
Krishnamurthy
,
G.
,
Majumder
,
N.
,
Poria
,
S.
, &
Cambria
,
E.
(
2018
).
A deep learning approach for multimodal deception detection.
arXiv preprint arXiv:1803.00344.
6.
Choudhary
,
A.
, &
Arora
,
A.
(
2021
).
Linguistic feature-based learning model for fake news detection and classification
.
Expert Systems with Applications
,
169
,
114171
.
7.
Wu
,
L.
, &
Liu
,
H.
(
2018
, February).
Tracing fake-news footprints: Characterizing social media messages by how they propagate
. In
Proceedings of the eleventh ACM international conference on Web Search and Data Mining
(pp.
637
645
).
8.
Shen
,
H.
,
Ma
,
F.
,
Zhang
,
X.
,
Zong
,
L.
,
Liu
,
X.
, &
Liang
,
W.
(
2017
).
Discovering social spammers from multiple views
.
Neurocomputing
,
225
,
49
57
.
9.
Zhang
,
X.
, &
Ghorbani
,
A. A.
(
2020
).
An overview of online fake news: Characterization, detection, and discussion
.
Information Processing & Management
,
57
(
2
),
102025
.
10.
Wang
,
Y.
,
Ma
,
F.
,
Jin
,
Z.
,
Yuan
,
Y.
,
Xun
,
G.
,
Jha
,
K.
, … &
Gao
,
J.
(
2018
, July).
Eann: Event adversarial neural networks for multi-modal fake news detection
. In
Proceedings of the 24th acm sigkdd international conference on knowledge discovery & data mining
(pp.
849
857
).
11.
Ahmad
,
I.
,
Yousaf
,
M.
,
Yousaf
,
S.
, &
Ahmad
,
M. O.
(
2020
).
Fake news detection using machine learning ensemble methods
.
Complexity
, 2020.
12.
Gilda
,
S.
(
2017
, December).
Notice of Violation of IEEE Publication Principles: Evaluating machine learning algorithms for fake news detection
. In
2017 IEEE 15th student conference on research and development (SCOReD
) (pp.
110
115
).
IEEE
.
13.
Islam
,
M. R.
,
Liu
,
S.
,
Wang
,
X.
, &
Xu
,
G.
(
2020
).
Deep learning for misinformation detection on online social networks: a survey and new perspectives
.
Social Network Analysis and Mining
,
10
(
1
),
1
20
.
14.
Howard
,
J.
, &
Gugger
,
S.
(
2020
).
Fastai: a layered API for deep learning
.
Information
,
11
(
2
),
108
.
15.
Merity
,
S.
,
Keskar
,
N. S.
, &
Socher
,
R.
(
2017
).
Regularizing and optimizing LSTM language models.
arXiv preprint arXiv:1708.02182.
16.
Shahi
,
G. K.
,
Dirkson
,
A.
, &
Majchrzak
,
T. A.
(
2021
).
An exploratory study of covid-19 misinformation on twitter
.
Online social networks and media
,
22
,
100104
.
17.
Shahi
,
G. K.
, &
Nandini
,
D.
(
2020
).
FakeCovid--A multilingual cross-domain fact check news dataset for COVID-19.
arXiv preprint arXiv:2006.11343.
18.
Howard
,
J.
, &
Ruder
,
S.
(
2018
).
Universal language model fine-tuning for text classification.
arXiv preprint arXiv:1801.06146.
19.
Shaheen
,
Z.
,
Wohlgenannt
,
G.
, &
Filtz
,
E.
(
2020
).
Large scale legal text classification using transformer models.
arXiv preprint arXiv:2010.12871.
20.
Granik
,
M.
, &
Mesyura
,
V.
(
2017
, May).
Fake news detection using naive Bayes classifier
. In
2017 IEEE first Ukraine conference on electrical and computer engineering (UKRCON
) (pp.
900
903
).
IEEE
.
21.
Sur
,
P.
, &
Candès
,
E. J.
(
2019
).
A modern maximum-likelihood theory for high-dimensional logistic regression
.
Proceedings of the National Academy of Sciences
,
116
(
29
),
14516
14525
.
22.
Chen
,
S.
,
Webb
,
G. I.
,
Liu
,
L.
, &
Ma
,
X.
(
2020
).
A novel selective naïve Bayes algorithm
.
Knowledge-Based Systems
,
192
,
105361
.
23.
Chaudhari
,
P.
, &
Soatto
,
S.
(
2018
, February).
Stochastic gradient descent performs variational inference, converges to limit cycles for deep networks
. In
2018 Information Theory and Applications Workshop (ITA
) (pp.
1
10
).
IEEE
.
24.
Ruchansky
,
N.
,
Seo
,
S.
, &
Liu
,
Y.
(
2017
, November).
Csi: A hybrid deep model for fake news detection
. In
Proceedings of the 2017 ACM on Conference on Information and Knowledge Management
(pp.
797
806
).
25.
Lee
,
J. Y.
, &
Dernoncourt
,
F.
(
2016
).
Sequential short-text classification with recurrent and convolutional neural networks.
arXiv preprint arXiv:1603.03827.
26.
Wang
,
D.
, &
Nyberg
,
E.
(
2015
, July).
A long short-term memory model for answer sentence selection in question answering
. In
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers
) (pp.
707
712
).
27.
Sutskever
,
I.
,
Vinyals
,
O.
, &
Le
,
Q. V.
(
2014
).
Sequence to sequence learning with neural networks
.
Advances in neural information processing systems
,
27
.
This content is only available via PDF.
You do not currently have access to this content.