Cervical cancer is caused by the growth of abnormal cells in the cervix’s lining. Human papillomavirus (HPV), a sexually transmitted infection, plays a role in most cervical cancers. Therefore, cervical cancer can be avoided by having regular screenings and being vaccinated against HPV infection. The term pap-smear refers to human cell samples stained using the Papanicolaou method. The Papanicolaou method is used to detect precancerous cell changes before they become invasive cancer. The smear cell image is composed of a nucleus and cytoplasm. Cancer prevalence is determined by the shape and structure of the nucleus. Therefore, the segmentation of the nucleus is an essential step in detecting cancer. However, overlapping, poor contrast, uneven staining, and other factors make cervical nucleus segmentation difficult. This paper proposes a new segmentation method for the cervical nucleus using digital image processing. Our proposed method used a median filter to remove noise and a non-linear contrast stretching to enhance the Pap smear images. Then, we used Bradley thresholding for the segmented cervical nucleus. The main impact of this paper will assist doctors in diagnosing cervical cancer based on Pap smear images and increase the accuracy percentages compared to the conventional method.

1.
World Health Organization
, “
Comprehensive Cervical Cancer Control. A guide to essential practice
,”
WHO Libr. Cat. Data
, pp.
1
284
,
2006
.
2.
A. K.
Das
,
L. B.
Mahanta
,
M. K.
Kundu
,
M.
Chowdhury
, and
K.
Bora
, “
Automated classification of Pap smear images to detect cervical dysplasia
,”
Comput. Methods Programs Biomed.
, vol.
138
, no.
October
, pp.
31
47
,
2016
.
3.
T.
Wang
,
J.
Huang
,
D.
Zheng
, and
Y.
He
, “
Nucleus Segmentation of Cervical Cytology Images Based on Depth Information
,”
IEEE Access
, vol.
8
, pp.
75846
75859
,
2020
.
4.
J.
Huang
,
T.
Wang
,
D.
Zheng
, and
Y.
He
, “
Nucleus segmentation of cervical cytology images based on multi-scale fuzzy clustering algorithm
,”
Bioengineered
, vol.
11
, no.
1
, pp.
484
501
,
2020
.
5.
K. M.
Sulur
,
A. S. A.
Nasir
,
W. A.
Mustafa
,
H.
Jaafar
, and
Z.
Mohamed
, “
Analysis of Colour Constancy Algorithms for Improving Segmentation of Malaria Images
,”
J. Telecommun. Electron. Comput. Eng.
, vol.
10
, no.
1–16
, pp.
43
49
,
2018
.
6.
A.
Gençtav
,
S.
Aksoy
, and
S.
Önder
, “
Unsupervised segmentation and classification of cervical cell images
,”
Pattern Recognit.
, vol.
45
, no.
12
, pp.
4151
4168
,
2012
.
7.
H. A.
Phoulady
,
D.
Goldgof
,
L. O.
Hall
, and
P. R.
Mouton
, “
A framework for nucleus and overlapping cytoplasm segmentation in cervical cytology extended depth of field and volume images
,”
Comput. Med. Imaging Graph.
, vol.
59
, pp.
38
49
,
2017
.
8.
H.
Lee
and
J.
Kim
, “
Segmentation of Overlapping Cervical Cells in Microscopic Images with Superpixel Partitioning and Cell-Wise Contour Refinement
,” in
IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
,
2016
, pp.
1367
1373
.
9.
M. E.
Plissiti
,
P.
Dimitrakopoulos
,
G.
Sfikas
,
C.
Nikou
,
O.
Krikoni
, and
A.
Charchanti
, “
Sipakmed: A New Dataset for Feature and Image Based Classification of Normal and Pathological Cervical Cells in Pap Smear Images
,” in
Proceedings - International Conference on Image Processing, ICIP
,
2018
, pp.
3144
3148
.
10.
N.
Nahrawi
,
W. A.
Mustafa
,
K. S. N. A.
Mohd
, and
M. Y.
Mashor
, “
Color Contrast Enhancement on Pap Smear Images Using Statistical Analysis
,”
Intell. Autom. Soft Comput.
, vol.
30
, no.
2
, pp.
431
438
,
2021
.
11.
N.
Nahrawi
,
W. A.
Mustafa
,
S. N. A. M.
Kanafiah
,
W. K. W.
Ahmad
,
M. N. K. H.
Rohani
, and
H. A.
Rahim
, “
Nucleus Detection on Pap Smear Image Using Mathematical Morphology Approach
,”
J. Biomimetics, Biomater. Biomed. Eng.
, vol.
49
, pp.
53
61
,
2021
.
12.
A.
Halim
,
W. A.
Mustafa
,
W. K. W.
Ahmad
,
H. A.
Rahim
, and
H.
Sakeran
, “
Nucleus Detection on Pap Smear Images for Cervical Cancer Diagnosis : A Review Analysis
,”
Oncologie
, vol.
23
, no.
1
, pp.
73
88
,
2021
.
13.
W. A.
Mustafa
,
H.
Yazid
, and
S.
Yaacob
, “
A Review : Comparison Between Different Type of Filtering Methods on the Contrast Variation Retinal Images
,” in
IEEE International Conference on Control System, Computing and Engineering
,
2014
, pp.
542
546
.
14.
T. S.
Huang
,
G. J.
Yang
, and
G. Y.
Tang
, “
A Fast Two-Dimensional Median Filtering Algorithm
,”
IEEE Trans. Acoust.
, vol.
27
, no.
1
, pp.
13
18
,
1979
.
15.
T.
Trongtirakul
,
D.
Ladyzhensky
,
W.
Chiracharit
, and
S. S.
Agaian
, “
Non-linear contrast stretching with optimizations
,”
2019
, p.
3
.
16.
D.
Bradley
and
G.
Roth
, “
Adaptive Thresholding Using the Integral Image
,”
J. Graph. GPU, Game Tools
, vol.
12
, no.
2
, pp.
13
21
,
2011
.
17.
W. A.
Mustafa
,
H.
Aziz
,
W.
Khairunizam
,
Z.
Ibrahim
,
S.
Ab
, and
Z. M.
Razlan
, “
Review of Different Binarization Approaches on Degraded Document Images
,” in
IEEE International Conference on Computational Approach in Smart Systems Design and Applications (ICASSDA)
,
2018
, pp.
1
8
.
This content is only available via PDF.
You do not currently have access to this content.