The proposed study aims to optimize a combination of solar irradiation and biogas with the organic Rankine cycle which offers a hybrid system that uses two renewable energy sources. Experience often dictates how these organic Rankine cycles should be configured, but experience does not always result in the most optimal configuration. This optimization involves combining the configurations of components and cycle parameters, which are the temperatures, pressures and mass flow rates to achieve the most efficient system. In this review paper, a comprehensive overview of solar organic Rankine cycle technology and the range of systems that have been studied in the literature has been provided. The best working fluid to be used is R134a and R245fa in the hybrid driven organic Rankine cycle. A flat plate solar collector was found to be sufficient for producing low kilowatt power generation. Plate heat exchangers were selected since they are suitable for low heat recovery, they are readily available and cost-effective. A scroll compressor used from the refrigeration industry converted into an expander will be used to generate power. To ensure maximum thermal energy storage, a sensible heat storage approach will be taken. Additionally, limitations of this technology are discussed, along with suggestions aimed at guiding future research in this area.

2.
Eskom’s double-digit tariff request unaffordable for struggling consumers - The Mail & Guardian.”
https://mg.co.za/business/2021-09-05-eskoms-double-digit-tariff-request-unaffordable-for-struggling-consumers/ (accessed Apr. 16, 2022).
3.
K.
Shahverdi
,
R.
Loni
,
B.
Ghobadian
,
S.
Gohari
,
S.
Marofi
, and
E.
Bellos
, “
Numerical Optimization Study of Archimedes Screw Turbine (AST): A case study
,”
Renew Energy
, vol.
145
, pp.
2130
2143
, Jan.
2020
, doi: .
4.
A.
Pegels
, “
Renewable Energy in South Africa: Potentials, Barriers, and options for support
,”
Energy Policy
, vol.
38
, no.
9
, pp.
4945
4954
,
2010
, doi: .
5.
V. R.
Patil
,
V. I.
Biradar
,
R.
Shreyas
,
P.
Garg
,
M. S.
Orosz
, and
N. C.
Thirumalai
, “
Techno-economic comparison of solar organic Rankine cycle (ORC) and photovoltaic (PV) systems with energy storage
,”
Renew Energy
, vol.
113
, pp.
1250
1260
, Dec.
2017
, doi: .
6.
B.
Twomey
,
P. A.
Jacobs
, and
H.
Gurgenci
, “
Dynamic performance estimation of small-scale solar cogeneration with an organic Rankine cycle using a scroll expander
,”
Appl Therm Eng
, vol.
51
, no.
1–2
, pp.
1307
1316
, Mar.
2013
, doi: .
7.
Emily
Spayde
&
Pedro J.
Mago
, “
Evaluation of a solar-powered organic Rankine cycle using dry organic working fluids
,”
2015
.
8.
Organic Rankine cycle - Wikipedia.”
https://en.wikipedia.org/wiki/Organic_Rankine_cycle (accessed Apr. 25, 2022).
9.
K.
Thurairaja
,
A.
Wijewardane
,
S.
Jayasekara
, and
C.
Ranasinghe
, “
Working Fluid Selection and Performance Evaluation of ORC
,”
Energy Procedia
, vol.
156
, pp.
244
248
, Jan.
2019
, doi: .
10.
H. M. D. P.
Herath
,
M. A.
Wijewardane
,
R. A. C. P.
Ranasinghe
, and
J. G. A. S.
Jayasekera
, “
Working fluid selection of Organic Rankine Cycles
,”
Energy Reports
, vol.
6
, pp.
680
686
, Dec.
2020
, doi: .
11.
J.
Freeman
,
K.
Hellgardt
, and
C. N.
Markides
, “
Working fluid selection and electrical performance optimisation of a domestic solar-ORC combined heat and power system for year-round operation in the UK
,”
Appl Energy
, vol.
186
, pp.
291
303
, Jan.
2017
, doi: .
12.
R.
Rayegan
and
Y. X.
Tao
, “
A procedure to select working fluids for Solar Organic Rankine Cycles (ORCs
),”
Renew Energy
, vol.
36
, no.
2
, pp.
659
670
, Feb.
2011
, doi: .
13.
B. F.
Tchanche
,
G.
Papadakis
,
G.
Lambrinos
, and
A.
Frangoudakis
, “
Fluid selection for a low-temperature solar organic Rankine cycle
,”
Appl Therm Eng
, vol.
29
, no.
11–12
, pp.
2468
2476
, Aug.
2009
, doi: .
14.
R. E.
Barber
, “
Current costs of solar powered organic Rankine cycle engines
,”
Solar Energy
, vol.
20
, no.
1
, pp.
1
6
, Jan.
1978
, doi: .
15.
R.
Loni
et al., “
A review of solar-driven organic Rankine cycles: Recent challenges and future outlook
,”
Renewable and Sustainable Energy Reviews
, vol.
150
, p.
111410
, Oct.
2021
, doi: .
16.
M.
Marion
,
I.
Voicu
, and
A. L.
Tiffonnet
, “
Study and optimization of a solar subcritical organic Rankine cycle
,”
Renew Energy
, vol.
48
, pp.
100
109
,
2012
, doi: .
17.
B.
Hellstrom
,
M.
Adsten
,
P.
Nostell
,
B.
Karlsson
, and
E.
Wackelgard
, “
The impact of optical and thermal properties on the performance of flat plate solar collectors
,”
Renew Energy
, vol.
28
, no.
3
, pp.
331
344
,
2003
, doi: .
18.
M.
Wang
,
J.
Wang
,
Y.
Zhao
,
P.
Zhao
, and
Y.
Dai
, “
Thermodynamic analysis and optimization of a solar-driven regenerative organic Rankine cycle (ORC) based on flat-plate solar collectors
,”
Appl Therm Eng
, vol.
50
, no.
1
, pp.
816
825
,
2013
, doi: .
19.
C.
Kutlu
,
J.
Li
,
Y.
Su
,
G.
Pei
, and
S.
Riffat
, “
Off-design performance modelling of a solar organic Rankine cycle integrated with pressurized hot water storage unit for community level application
,”
Energy Convers Manag
, vol.
166
, no.
May
, pp.
132
145
,
2018
, doi: .
20.
Parabolic trough - Wikipedia.”
https://en.wikipedia.org/wiki/Parabolic_trough (accessed Apr. 26, 2022).
21.
S.
Quoilin
,
M.
Orosz
,
H.
Hemond
, and
V.
Lemort
, “
Performance and design optimization of a low-cost solar organic Rankine cycle for remote power generation
,”
Solar Energy
, vol.
85
, no.
5
, pp.
955
966
, May
2011
, doi: .
22.
Y. L.
He
,
D. H.
Mei
,
W. Q.
Tao
,
W. W.
Yang
, and
H. L.
Liu
, “
Simulation of the parabolic trough solar energy generation system with Organic Rankine Cycle
,”
Appl Energy
, vol.
97
, pp.
630
641
,
2012
, doi: .
23.
Z.
Xi
,
S.
Eshaghi
, and
F.
Sardari
, “
Energy, exergy, and exergoeconomic analysis of a polygeneration system driven by solar energy with a thermal energy storage tank for power, heating, and freshwater production
,”
J Energy Storage
, vol.
36
, no.
March
, p.
102429
,
2021
, doi: .
24.
A.
Omar
,
A.
Nashed
,
Q.
Li
,
G.
Leslie
, and
R. A.
Taylor
, “
Pathways for integrated concentrated solar power - Desalination: A critical review
,”
Renewable and Sustainable Energy Reviews
, vol.
119
, no.
May 2019
, p.
109609
,
2020
, doi: .
25.
A.
Awasthi
et al, “
Review on sun tracking technology in solar PV system
,”
Energy Reports
, vol.
6
, pp.
392
405
, Nov.
2020
, doi: .
26.
I.
Sefa
,
M.
Demirtas
, and
I.
Çolak
, “
Application of one-axis sun tracking system
,”
Energy Convers Manag
, vol.
50
, no.
11
, pp.
2709
2718
, Nov.
2009
, doi: .
27.
B. J.
Huang
,
Y. C.
Huang
,
G. Y.
Chen
,
P. C.
Hsu
, and
K.
Li
, “
Improving Solar PV System Efficiency Using One-Axis 3-Position Sun Tracking
,”
Energy Procedia
, vol.
33
, pp.
280
287
, Jan.
2013
, doi: .
28.
Types of Concentrating Solar Collectors - your electrical guide.”
https://www.yourelectricalguide.com/2018/07/types-of-concentrating-solar-collectors.html (accessed Apr. 27, 2022).
29.
K.
Shahverdi
et al., “
Energy harvesting using solar ORC system and Archimedes Screw Turbine (AST) combination with different refrigerant working fluids
,”
Energy Convers Manag
, vol.
187
, no.
January
, pp.
205
220
,
2019
, doi: .
30.
R.
Loni
,
A. B.
Kasaeian
,
O.
Mahian
, and
A. Z.
Sahin
, “
Thermodynamic analysis of an organic rankine cycle using a tubular solar cavity receiver
,”
Energy Convers Manag
, vol.
127
, pp.
494
503
,
2016
, doi: .
31.
What is a Plate Heat Exchanger? | How does a Plate Exchanger work?”
https://mechanicalboost.com/plate-heat-exchanger/ (accessed Mar. 29, 2022).
32.
S.
Jin
and
P.
Hrnjak
, “
A new method to simultaneously measure local heat transfer and visualize flow boiling in plate heat exchanger
,”
Int J Heat Mass Transf
, vol.
113
, pp.
635
646
,
2017
, doi: .
33.
R. L.
Amalfi
,
J. R.
Thome
,
V.
Solotych
, and
J.
Kim
, “
High resolution local heat transfer and pressure drop infrared measurements of two-phase flow of R245fa within a compact plate heat exchanger
,”
Int J Heat Mass Transf
, vol.
103
, pp.
791
806
,
2016
, doi: .
34.
S.
Fettaka
,
J.
Thibault
, and
Y.
Gupta
, “
Design of shell-and-tube heat exchangers using multiobjective optimization
,”
Int J Heat Mass Transf
, vol.
60
, no.
1
, pp.
343
354
, May 2013, doi: .
35.
Construction Basics of Shell and Tube Heat Exchangers | Process Heating.”
https://www.process-heating.com/articles/86667-construction-basics-of-shell-and-tube-heat-exchangers (accessed Apr. 30, 2022).
36.
Basics of Shell & Tube Heat Exchangers - Arveng Training & Engineering.”
https://arvengtraining.com/en/basics-of-shell-tube-heat-exchangers/ (accessed Apr. 30, 2022).
37.
J.-E.
Teesside
, undefined Ukraine, and undefined
2008
, “
Design and rating shell and tube heat exchangers
,” prosim.hyprotech.chemstations.com.
38.
Y.
Li
,
X.
Jiang
,
X.
Huang
,
J.
Jia
, and
J.
Tong
, “
Optimization of high-pressure shell-and-tube heat exchanger for syngas cooling in an IGCC
,”
Int J Heat Mass Transf
, vol.
53
, no.
21–22
, pp.
4543
4551
,
2010
, doi: .
39.
Z.
Shengjun
,
W.
Huaixin
, and
G.
Tao
, “
Performance comparison and parametric optimization of subcritical Organic Rankine Cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation
,”
Appl Energy
, vol.
88
, no.
8
, pp.
2740
2754
,
2011
, doi: .
40.
A.
Domingues
,
H.
Santos
, and
M.
Costa
, “
Analysis of vehicle exhaust waste heat recovery potential using a Rankine cycle
,”
Energy
, vol.
49
, no.
1
, pp.
71
85
,
2013
, doi: .
41.
D.
Walraven
,
B.
Laenen
, and
W.
D’Haeseleer
, “
Optimum configuration of shell-and-tube heat exchangers for the use in low-temperature organic Rankine cycles
,”
Energy Convers Manag
, vol.
83
, pp.
177
187
,
2014
, doi: .
42.
G.
Qiu
,
H.
Liu
, and
S.
Riffat
, “
Expanders for micro-CHP systems with organic Rankine cycle
,”
Appl Therm Eng
, vol.
31
, no.
16
, pp.
3301
3307
, Nov.
2011
, doi: .
43.
K.
Rahbar
,
S.
Mahmoud
,
R. K.
Al-Dadah
,
N.
Moazami
, and
S. A.
Mirhadizadeh
, “
Review of organic Rankine cycle for small-scale applications
,”
Energy Convers Manag
, vol.
134
, pp.
135
155
, Feb.
2017
, doi: .
44.
F.
Sun
,
Y.
Ikegami
,
B.
Jia
, and
H.
Arima
, “
Optimization design and exergy analysis of organic rankine cycle in ocean thermal energy conversion
,”
Applied Ocean Research
, vol.
35
, pp.
38
46
, Mar.
2012
, doi: .
45.
S.
Emhardt
,
G.
Tian
, and
J.
Chew
, “
A review of scroll expander geometries and their performance
,”
Appl Therm Eng
, vol.
141
, pp.
1020
1034
, Aug.
2018
, doi: .
46.
M.
Cambi
,
R.
Tascioni
,
L.
Cioccolanti
, and
E.
Bocci
, “
Converting a commercial scroll compressor into an expander: experimental and analytical performance evaluation
,”
Energy Procedia
, vol.
129
, pp.
363
370
, Sep.
2017
, doi: .
47.
Performance of a small-scale regenerative Rankine power cycle employing a scroll expander - ProQuest.”
https://www.proquest.com/docview/219211798?parentSessionId=IaKcPFSIOl7C9PMcex4ekRj0OBuvkec% 2BKrPgXG8LIWU%3D&pq-origsite=primo&accountid=26862 (accessed May 03, 2022).
48.
Journal of Environment and Engineering.”
https://www.jstage.jst.go.jp/browse/jee/ (accessed May 03, 2022).
49.
J.
Bao
and
L.
Zhao
, “
A review of working fluid and expander selections for organic Rankine cycle
,”
Renewable and Sustainable Energy Reviews
, vol.
24
, pp.
325
342
, Aug.
2013
, doi: .
50.
G.
Qiu
,
H.
Liu
, and
S.
Riffat
, “
Expanders for micro-CHP systems with organic Rankine cycle
,”
Appl Therm Eng
, vol.
31
, no.
16
, pp.
3301
3307
, Nov.
2011
, doi: .
51.
B.
Lei
et al., “
Development and experimental study on a single screw expander integrated into an Organic Rankine Cycle
,”
Energy
, vol.
116
, pp.
43
52
, Dec.
2016
, doi: .
52.
A.
Bardow
et al., “
Oudkerk J-F and Lemort V (2020) Detailed Experimental and Model-Based Analysis of a Swash-Plate Piston Expander for ORC Application Detailed Experimental and Model-Based Analysis of a Swash-Plate Piston Expander for ORC Application
,”
Frontiers in Energy Research
| www.frontiersin.org, vol.
1
, p.
107
,
2020
, doi: .
53.
M.
Bianchi
et al., “
Experimental analysis of a micro-ORC driven by piston expander for low-grade heat recovery
,”
Appl Therm Eng
, vol.
148
, pp.
1278
1291
, Feb.
2019
, doi: .
54.
B.
Yang
,
X.
Peng
,
Z.
He
,
B.
Guo
, and
Z.
Xing
, “
Experimental investigation on the internal working process of a CO2 rotary vane expander
,”
Appl Therm Eng
, vol.
29
, no.
11–12
, pp.
2289
2296
, Aug.
2009
, doi: .
55.
Y. R.
Hwang
,
Y. T.
Shen
, and
M. S.
Chen
, “
Dynamic analysis and fuzzy logic control for the vane-type air motor
,”
Journal of Mechanical Science and Technology
, vol.
23
, no.
12
, pp.
3232
3238
, Dec.
2009
, doi: .
56.
R.
Cipollone
,
G.
Bianchi
,
D.
Di Battista
,
G.
Contaldi
, and
S.
Murgia
, “
Mechanical Energy Recovery from Low Grade Thermal Energy Sources
,”
Energy Procedia
, vol.
45
, pp.
121
130
, Jan.
2014
, doi: .
57.
K.
Rahbar
,
S.
Mahmoud
, and
R. K.
Al-Dadah
, “
Mean-line modeling and CFD analysis of a miniature radial turbine for distributed power generation systems
,”
International Journal of Low-Carbon Technologies
, vol.
11
, no.
2
, pp.
157
168
, May
2016
, doi: .
58.
E.
Sauret
and
A. S.
Rowlands
, “
Candidate radial-inflow turbines and high-density working fluids for geothermal power systems
,”
Energy
, vol.
36
, no.
7
, pp.
4460
4467
, Jul.
2011
, doi: .
59.
F.
Hussain
,
M. Z.
Rahman
,
A. N.
Sivasengaran
, and
M.
Hasanuzzaman
, “
Energy storage technologies
,”
Energy for Sustainable Development: Demand, Supply, Conversion and Management
, pp.
125
165
, Jan.
2019
, doi: .
60.
E.
Bellos
and
C.
Tzivanidis
, “
Financial Optimization of a Solar-Driven Organic Rankine Cycle
.,”
Applied System Innovation
, vol.
3
, no.
2
, p.
NA
NA
, Jun.
2020
, doi: .
61.
J. M.
Rodríguez
,
D.
Sánchez
,
G. S.
Martínez
,
E. G.
Bennouna
, and
B.
Ikken
, “
Techno-economic assessment of thermal energy storage solutions for a 1 MWe CSP-ORC power plant
,”
Solar Energy
, vol.
140
, pp.
206
218
, Dec.
2016
, doi: .
62.
V. R.
Patil
,
V. I.
Biradar
,
R.
Shreyas
,
P.
Garg
,
M. S.
Orosz
, and
N. C.
Thirumalai
, “
Techno-economic comparison of solar organic Rankine cycle (ORC) and photovoltaic (PV) systems with energy storage
,”
Renew Energy
, vol.
113
, pp.
1250
1260
, Dec.
2017
, doi: .
63.
Thermal energy storage - Wikipedia.”
https://en.wikipedia.org/wiki/Thermal_energy_storage (accessed May
15
,
2022
).
64.
J. Z.
Alvi
,
M.
Imran
,
G.
Pei
,
J.
Li
,
G.
Gao
, and
J.
Alvi
, “
Thermodynamic comparison and dynamic simulation of direct and indirect solar organic Rankine cycle systems with PCM storage
,”
Energy Procedia
, vol.
129
, pp.
716
723
, Sep.
2017
, doi: .
65.
J.
Lizana
,
C.
Bordin
, and
T.
Rajabloo
, “
Integration of solar latent heat storage towards optimal small-scale combined heat and power generation by Organic Rankine Cycle
,”
J Energy Storage
, vol.
29
, p.
101367
, Jun.
2020
, doi: .
66.
G.
Manfrida
,
R.
Secchi
, and
K.
Stańczyk
, “
Modelling and simulation of phase change material latent heat storages applied to a solar-powered Organic Rankine Cycle
,”
Appl Energy
, vol.
179
, pp.
378
388
, Oct.
2016
, doi: .
67.
J.
Freeman
,
I.
Guarracino
,
S. A.
Kalogirou
, and
C. N.
Markides
, “
A small-scale solar organic Rankine cycle combined heat and power system with integrated thermal energy storage
,”
Appl Therm Eng
, vol.
127
, pp.
1543
1554
, Dec.
2017
, doi: .
68.
Solar Batteries | Deep Cycle | Lithium & Lead-Acid | Options for 2020.”
https://solaradvice.co.za/solar-batteries#what (accessed May 11, 2022).
69.
F.
Vélez
,
J. J.
Segovia
,
M. C.
Martín
,
G.
Antolín
,
F.
Chejne
, and
A.
Quijano
, “
A technical, economical and market review of organic Rankine cycles for the conversion of low-grade heat for power generation
,”
Renewable and Sustainable Energy Reviews
, vol.
16
, no.
6
, pp.
4175
4189
, Aug.
2012
, doi: .
70.
M.
Ashouri
et al., “
Exergy and exergo-economic analysis and optimization of a solar double pressure organic Rankine cycle
,”
Thermal Science and Engineering Progress
, vol.
6
, pp.
72
86
, Jun.
2018
, doi: .
71.
C.
Tzivanidis
,
E.
Bellos
, and
K. A.
Antonopoulos
, “
Energetic and financial investigation of a stand-alone solar-thermal Organic Rankine Cycle power plant
,”
Energy Convers Manag
, vol.
126
, pp.
421
433
, Oct.
2016
, doi: .
72.
S.
Quoilin
,
M.
Orosz
,
H.
Hemond
, and
V.
Lemort
, “
Performance and design optimization of a low-cost solar organic Rankine cycle for remote power generation
,”
Solar Energy
, vol.
85
, no.
5
, pp.
955
966
, May 2011, doi: .
73.
M.
Kane
,
D.
Larrain
,
D.
Favrat
, and
Y.
Allani
, “
Small hybrid solar power system
,”
Energy
, vol.
28
, no.
14
, pp.
1427
1443
, Nov.
2003
, doi: .
74.
D.
Manolakos
,
G.
Papadakis
,
S.
Kyritsis
, and
K.
Bouzianas
, “
Experimental evaluation of an autonomous low-temperature solar Rankine cycle system for reverse osmosis desalination
,”
Desalination
, vol.
203
, no.
1–3
, pp.
366
374
, Feb.
2007
, doi: .
75.
X. D.
Wang
,
L.
Zhao
,
J. L.
Wang
,
W. Z.
Zhang
,
X. Z.
Zhao
, and
W.
Wu
, “
Performance evaluation of a low-temperature solar Rankine cycle system utilizing R245fa
,”
Solar Energy
, vol.
84
, no.
3
, pp.
353
364
, Mar.
2010
, doi: .
This content is only available via PDF.
You do not currently have access to this content.