Artificial Intelligence (AI) is a technological know-how or era that may be applied to show a simple machine right into a clever machine. Making or designing a machine that thinks and works like a person is mentioned be intelligent. We can witness the evolution of computers, from the primary mechanical computer, the “Babbage Difference Engine,” to the Supercomputer “Fujitsu Fugaku,” way to AI. E-commerce, navigation, robotics, human resources, healthcare, agriculture, gaming, automobiles, and quite a few different regions have all benefited from AI. AI is carried out in Emergency Medicine to growth operational efficiencies, surgery, and healthcare quality. When it involves illnesses like COVID-19, AI is used to represent the tissues of sufferers and classify the severity of infection. When it involves cancer, genomic sequencing can resolve all mutations that force person tumors, so AI is used to seize the genetic make-up of person sufferers and shape personalised medicine. AI is utilized in pharmacy to layout tablets and higher information of contamination heterogeneity. It not only identifies healing targets, however additionally designs and optimizes drug candidates. Computation Formulation of Orthodontic Referral Decision (CFOD) is an artificial intelligence (AI) idea applied in orthodontics to help decision-making for orthodontic diagnosis. In this paper, we aim to discuss the role of AI in Health care, such as Dentistry, Medicine, Emergency Medicine, Orthopaedic, Pharmacies, etc,.

2.
S.
Russel
,
P.
Norvig
,
Artificial Intelligence: A Modern Approach
, Global Edition,
Addison Wesley
,
Boston
.
3.
Hosny
A
,
Parmar
C
,
Quackenbush
J
,
Schwartz
L.H.
,
Aerts
H.J.W.L.
Artificial intelligence in radiology
.
Nat Rev Cancer
2018
;
18
:
500
10
.
4.
Nelson
A
,
Herron
D
,
Rees
G
,
Nachev
P.
Predicting scheduled hospital attendance with artificial intelligence
.
npj Digital Med
2019
;
2
:
26
5.
G.
Mahadevaiah
, P. RV,
I.
Bermejo
,
D.
Jaffray
,
A.
Dekker
,
L.
Wee
,
Artificial intelligence-based clinical decision support in modern medical physics: Selection, acceptance, commissioning, and quality assurance
,
Med Phys
47
(
5
) (
2020
)
e228
e235
6.
Bi
W.L.
,
Hosny
A
,
Schabath
M.B.
,
Giger
M.L.
,
Birkbak
N.J.
,
Mehrtash
A
,
Allison
T
,
Arnaout
O
,
Abbosh
C
,
Dunn
I.F.
,
Mak
R.H.
,
Tamimi
R.M.
,
Tempany
C.M.
,
Swanton
C
,
Hoffmann
U
,
Schwartz
L.H.
,
Gillies
R.J.
,
Huang
R.Y.
,
Aerts
H.J.WL
.
Artificial intelligence in cancer imaging: clinical challenges and applications
.
CA Cancer J Clin
2019
;
69
(
2
):
127
57
7.
S.
Vollmer
,
B.A.
Mateen
,
G.
Bohner
,
F.J.
Kiraly
,
R.
Ghani
,
P.
Jonsson
,
S.
Cumbers
,
A.
Jonas
,
K.S.L.
McAllister
,
P.
Myles
,
D.
Granger
,
M.
Birse
,
R.
Branson
,
K.G. M.
Moons
,
G.S.
Collins
,
J.P.A.
Ioannidis
,
C.
Holmes
,
H.
Hemingway
,
Machine learning and artificial intelligence research for patient benefit: 20 critical questions on transparency, replicability, ethics, and effectiveness
,
BMJ
368
(
2020
)
6927
8.
Kelley
K
,
Clark
B
,
Brown
V
,
Sitzia
J.
Good practice in the conduct and reporting of survey research
.
Int J Quality Health Care
2003
;
15
(
3
):
261
6
.
9.
Thrall
J.H.
,
Li
X
,
Li
Q
,
Cruz
C
,
Do
S
,
Dreyer
K
,
Brink
J.
Artificial intelligence and machine learning in radiology: opportunities, challenges, pitfalls, and criteria for success
.
J Am College Radiol
2018
;
15
(
3
):
504
8
10.
L.
Saba
,
A.
Tiwari
,
M.
Biswas
,
S.K.
Gupta
,
E.
Godia-Cuadrado
,
A.
Chaturvedi
,
M.
Turk
,
H.S.
Suri
,
S.
Orru
,
J.M.
Sanches
,
Wilson’s disease: a new perspective review on its genetics, diagnosis and treatment
,
Frontiers in bioscience (Elite edition)
11
(
2019
)
166
185
.
11.
S.B.
Khanagar
,
A.
Al-ehaideb
,
P.C.
Maganur
,
S.
Vishwanathaiah
,
S.
Patil
,
H. A.
Baeshen
,
S.C.
Sarode
,
S.
Bhandi
,
Developments, application, and performance of artificial intelligence in dentistry – a systematic review
,
J. Dent. Sci.
16
(
1
) (
2021
)
508
522
12.
F.
Schwendicke
,
W.
Samek
,
J.
Krois
,
Artificial intelligence in dentistry: chances and challenges
,
J. Dent. Res.
99
(
7
) (
2020
)
769
774
.
13.
Y.W.
Chen
,
K.
Stanley
,
W.
Att
,
Artificial intelligence in dentistry: current applications and future perspectives
,
Quintessence Int. (Berlin, Germany: 1985)
51
(
3
) (
2020
)
248
257
.
14.
J.
Mongan
,
L.
Moy
,
C.E.
Kahn
,
Checklist for artificial intelligence in medical imaging (CLAIM): a guide for authors and reviewers
,
Radiol. Artif. Intell.
2
(
2
) (
2020
),
e200029
.
This content is only available via PDF.
You do not currently have access to this content.