The existence of sarcasm in sentences causes results in the determination that the sentiment of a text is inaccurate because sarcasm is difficult to analyze automatically, even by humans. Sarcasm Detection is a growing research area in Natural Language Processing (NLP) and is implemented for various domains. This research proposed sarcasm detection using Multi-Layer Bidirectional Long Short-Term Memory (BiLSTM). The use of Multi-Layer BiLSTM accurately results in classification text and reduces overfitting. Then, Glove can increase the accuracy of system performance because GloVe constructs an explicit word-context or word co-occurrence matrix using statistics across the whole text corpus. The steps used are text pre-processing, splitting the dataset, embedding, modeling, implementation, and evaluation using a confusion matrix. The result of Multi-Layer BiLSTM with Glove Embeddings to detect sarcasm in a sentence can produce a high accuracy of 95.41% and improve 5.71% from previous research with the same dataset.

1.
R.
Misra
,
News headlines dataset for sarcasm detection.
2018
.
2.
A. K.
Uysal
and
S.
Gunal
, "
The impact of preprocessing on text classification
,"
Information processing & management
, vol.
50
, no.
1
, pp.
104
112
,
2014
.
3.
C.
Ramasubramanian
and
R.
Ramya
, "
Effective pre-processing activities in text mining using improved porter’s stemming algorithm
,"
International Journal of Advanced Research in Computer and Communication Engineering
, vol.
2
, no.
12
, pp.
4536
4538
,
2013
.
4.
S.
Vijayarani
,
M. J.
Ilamathi
, and
M.
Nithya
, "
Preprocessing techniques for text mining-an overview
,"
International Journal of Computer Science & Communication Networks
, vol.
5
, no.
1
, pp.
7
16
,
2015
.
5.
A.
Gautam
and
K. R.
Jerripothula
, "
Sgg: Spinbot, grammarly and glove based fake news detection
," pp.
174
182
:
IEEE
.
6.
J.
Pennington
,
R.
Socher
, and
C. D.
Manning
, "
Glove: Global vectors for word representation
,"
1971
, vol.
19
, pp.
517
425
.
7.
A.
Nurdin
,
B. A. S.
Aji
,
A.
Bustamin
, and
Z.
Abidin
, "
Perbandingan Kinerja Word Embedding Word2Vec, Glove, Dan Fasttext Pada Klasifikasi Teks
,"
Jurnal Tekno Kompak
, vol.
14
, no.
2
, pp.
74
79
,
2020
.
8.
S.
Cornegruta
,
R.
Bakewell
,
S.
Withey
, and
G.
Montana
, "
Modelling radiological language with bidirectional long short-term memory networks
,"
arXiv preprint
arXiv:1609.08409, pp.
17
27
,
2016
.
9.
G. E.
Hinton
,
N.
Srivastava
,
A.
Krizhevsky
,
I.
Sutskever
, and
R. R.
Salakhutdinov
, "
Improving neural networks by preventing co-adaptation of feature detectors
," pp.
1
18
,
2012
.
10.
N.
Srivastava
,
G.
Hinton
,
A.
Krizhevsky
,
I.
Sutskever
, and
R.
Salakhutdinov
, "
Dropout: a simple way to prevent neural networks from overfitting
,"
The journal of machine learning research
, vol.
299
, no.
3-4
, pp.
345
350
,
2014
.
11.
T.
Zan
,
Z.
Liu
,
Z.
Su
,
M.
Wang
,
X.
Gao
, and
D.
Chen
, "
Statistical process control with intelligence based on the deep learning model
,"
Applied Sciences
, vol.
10
, no.
1
, p.
308
,
2020
.
12.
H.
Chung
and
K.-s.
Shin
, "
Genetic algorithm-optimized long short-term memory network for stock market prediction
,"
Sustainability
, vol.
10
, no.
10
, p.
3765
,
2018
.
13.
S.
Visa
,
B.
Ramsay
,
A. L.
Ralescu
, and
E.
Van Der Knaap
, "
Confusion matrix-based feature selection
,"
MAICS
, vol.
710
, no.
1
, pp.
120
127
,
2011
.
14.
P. K.
Mandal
and
R.
Mahto
, "
Deep CNN-LSTM with word embeddings for news headline sarcasm detection
," pp.
495
498
:
Springer
.
15.
R.
Misra
and
P.
Arora
, "
Sarcasm detection using hybrid neural network
,"
2019
.
This content is only available via PDF.
You do not currently have access to this content.