The rapid spread of covid-19 worldwide made WHO decide covid-19 was a global pandemic. This spread impacts the Economy, Education, Social, and others. In response to this, the Indonesian government took action to procure covid-19 vaccination. This vaccination action is one way to reduce the spread of the covid-19 virus. The procurement of vaccinations in Indonesia has caused responses and opinions on various social media, one of which is Twitter. Many Indonesians give their opinion or opinion on Twitter about the procurement of vaccinations. Sentiment analysis is a way of analyzing how the views of the Indonesian people about vaccination. This study aims to create a classification model to determine the sentiment analysis of the Indonesian people regarding the procurement of vaccination using the Long Short-Term Memory (LSTM) method. Several studies are discussing sentiment analysis using the LSTM method, but in this research, fasttext embedding will be used, combined with selecting the proper optimization function and learning rate. The number of datasets resulting from crawling from Twitter is 1268. The best results from all LSTM model tests were obtained using fasttext embedding with SGD learning rate schedule, namely 85% accuracy and 85% f1-score. The addition of fasttext embedding can increase the model’s effectiveness by 21%.

1.
M.
Ujiie
,
S.
Tsuzuki
,
T.
Nakamoto
, and
N.
Iwamoto
, "
Resurgence of respiratory syncytial virus infections during COVID-19 pandemic, Tokyo, Japan
,"
Emerging Infectious Diseases
, vol.
27
, no.
11
, p.
2969
,
2021
.
2.
A.
Reymanda
, "
Pengaturan Sanksi Administrasi Berdasarkan Peraturan Presiden Nomor 14 Tahun 2021 Tentang Pengadaan Vaksin Dan Pelaksanaan Vaksinasi Dalam Rangka Penanggulangan Pandemi Corona Virus Disease 2019
,"
2022
.
3.
I. S.
Permana
,
T.
Hidayat
, and
R.
Mahardiko
, "
Users’ Intentions and Behaviors Toward Portable Scanner Application-Do Education and Employment Background Moderates the Effect of UTAUT Main Theory?
," vol.
1803
, p.
012034
:
IOP Publishing
.
4.
E. A.
Fitriarti
, "
Urgensi literasi digital dalam menangkal hoax informasi kesehatan di era digital
,"
Metacommunication; Journal of Communication Studies
, vol.
4
, no.
2
, pp.
234
246
,
2019
.
5.
M. S.
Mubarok
,
Adiwijaya
, and
M. D.
Aldhi
, "
Aspect-based sentiment analysis to review products using Naïve Bayes
," vol.
1867
, p.
020060
:
AIP Publishing LLC
.
6.
A.
Khakharia
,
V.
Shah
, and
P.
Gupta
, "
Sentiment Analysis of COVID-19 Vaccine Tweets Using Machine Learning
,"
Available at SSRN 3869531
,
2021
.
7.
D. B.
Setyohadi
,
F. A.
Kristiawan
, and
E.
Ernawati
, "
Perbaikan Performansi Klasifikasi Dengan Preprocessing Iterative Partitioning Filter Algorithm
,"
Telematika
, vol.
14
, no.
1
, pp.
12
20
,
2017
.
8.
O.
Dwiraswati
and
K. N.
Siregar
, "
Analisis Sentimen pada Twitter terhadap Penggunaan Antibiotik Di Indonesia Dengan Naive Bayes Classifier
,"
Media Informasi
, vol.
15
, no.
1
, pp.
1
9
,
2019
.
9.
A. D.
Wattimena
, "
Analisis Sentimen Teks Bahasa Indonesia Pada Media Sosial Menggunakan Algoritma Convolutional Neural Network (Studi Kasus: E-Commerce)
,"
2018
.
10.
A.
Faadilah
, "
Analisis sentimen pada ulasan aplikasi tokopedia di google play store menggunakan metode long short term memory
,"
2020
.
11.
M. S.
Alrajak
,
I.
Ernawati
, and
I.
Nurlaili
, "
Analisis Sentimen Terhadap Pelayanan PT. PLN Di Jakarta Pada Twitter Dengan Algoritma K-Nearest Neighbor (K-NN)
,"
Senamika
, vol.
1
, no.
2
, pp.
110
122
,
2020
.
12.
F.
Alfariqi
,
W.
Maharani
, and
J. H.
Husen
, "
Klasifikasi Sentimen Pada Twitter Dalam Membantu Pemilihan Kandidat Karyawan Dengan Menggunakan Convolutional Neural Network Dan Fasttext Embeddings
,"
eProceedings of Engineering
, vol.
7
, no.
2
,
2020
.
13.
A.
Nurdin
,
B. A. S.
Aji
,
A.
Bustamin
, and
Z.
Abidin
, "
Perbandingan Kinerja Word Embedding Word2Vec, Glove, Dan Fasttext Pada Klasifikasi Teks
,"
Jurnal Tekno Kompak
, vol.
14
, no.
2
, pp.
74
79
,
2020
.
14.
Y.
Zhou
, "
A review of text classification based on deep learning
," pp.
132
136
.
15.
M. A.
Riza
and
N.
Charibaldi
, "
Emotion Detection in Twitter Social Media Using Long Short-Term Memory (LSTM) and Fast Text
,"
Int. J. Artif. Intell. Robot
, vol.
3
, no.
1
, pp.
15
26
,
2021
.
16.
W.
Widayat
, "
Analisis Sentimen Movie Review menggunakan Word2Vec dan metode LSTM Deep Learning
,"
Jurnal Media Informatika Budidarma
, vol.
5
, no.
3
, pp.
1018
1026
,
2021
.
This content is only available via PDF.
You do not currently have access to this content.