Renewable Energy Power Plants, which are electric power generation using natural potential such as wind gusts, water flow, solar radiation, and so on, are environment-friendly power plants. Although environmentally friendly, renewable energy power plants have a very fluctuating level of electricity production depending on the natural phenomena around them, so proper planning is needed to prepare for better management of energy resources, one of which is forecasting short-term loads. This study uses the Complex-valued Neural Network (CVNN) method as short-term load forecasting at the Baron Technopark Yogyakarta renewable energy power plant in order to prepare for better management of energy resources to deal with fluctuating electrical energy production. The four CVNN networks architecture is tested, which are the input layer, hidden layer, and output layer will be varied for each network. This forecasting model uses Adam Optimizer as an optimization algorithm with a ratio of (80:20) and (70:30). Parameters for model training used include the number of samples that will be used to update the neural network model parameters (batch size), the number of times the entire dataset will be entered into the neural network model (epoch). The proportion of datasets that will be used as validation (validation split) and then the network performance will be evaluated using mean square error (MSE) and mean absolute percentage error (MAPE). This study shows that the best network model tested is a network model with 96-time units of input, 64 input layers, 32 hidden layers, 32 output layers, and a ratio (80:20) with MSE results of 0.001 and MAPE of 9.37%. The predictive ability of the network can be categorized as very good because the MAPE value is less than 10%.

1.
M.
Irfan
,
Z.-y.
Zhao
,
M.
Ahmad
, and
A.
Rehman
, “
A techno-economic analysis of off-grid solar PV system: A case study for Punjab Province in Pakistan
,”
Processes
, vol.
7
, no.
10
, p.
708
,
2019
.
2.
A.
Tuara
, "
Tinjauan Pemodelan Sistem Dan Formulasi Economic Dispatch Untuk Sistem Tenaga Listrik Hibrida Berbasis Variable Renewable Energy Dengan PLTA Pumped Storage.
"
3.
A.
Faruq
,
H. P.
Arsa
,
S. F. M.
Hussein
,
C. M. C.
Razali
,
A.
Marto
, and
S. S.
Abdullah
, “
Deep Learning-Based Forecast and Warning of Floods in Klang River, Malaysia
,”
Ingénierie des Systèmes d Inf.
, vol.
25
, no.
3
, pp.
365
370
,
2020
.
4.
M.
Irfan
and
F.
Ramlie
, “
Analysis of Parameters which Affects Prediction of Energy Consumption in Buildings using Partial Least Square (PLS) Approach
,”
Journal of Advanced Research in Applied Sciences and Engineering Technology
, vol.
25
, no.
1
, pp.
61
68
,
2021
.
5.
M.
Irfan
,
F.
Ramlie
,
M. L.
Widianto
, and
A.
Faruq
, “
Prediction of Residential Building Energy Efficiency Performance using Deep Neural Network
,”
IAENG International Journal of Computer Science
, vol.
48
, no.
3
, pp.
731
737
,
2021
.
6.
S.
Sepasi
,
E.
Reihani
,
A. M.
Howlader
,
L. R.
Roose
, and
M. M.
Matsuura
, “
Very short term load forecasting of a distribution system with high PV penetration
,”
Renewable energy
, vol.
106
, pp.
142
148
,
2017
.
7.
S. A.
Sani
, "
Perbandingan Metode Peramalan Beban Listrik Jangka Pendek menggunakan Metode Moving Average, Single Exponential Smoothing dan Autoregressive Moving Average di Yogyakarta
,"
2018
.
8.
P. A.
Mertasana
and
G. D.
Arjana
, “
PERAMALAN BEBAN LISTRIK JANGKA PENDEK DI BALI MENGGUNAKAN PENDEKATAN ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS
),"
Majalah Ilmiah Teknologi Elektro
, vol.
11
, no.
1
,
2013
.
9.
N.
Setyawan
,
M.
Nasar
, and
N.
Mardiyah
, "
Jaya-Neural Network for Server Room Temperature Forecasting Through Sensor Network,"
2019
:
IEEE
, pp.
428
431
.
10.
I. A. M. C.
Dewi
,
I. M. A.
Nrartha
, and
I. M. B.
Suksmadana
, “
Peramalan Beban Listrik Jangka Pendek Pada Sistem Kelistrikan Lombok Dengan Fuzzy Time Series (FTS
),"
DIELEKTRIKA
, vol.
3
, no.
1
, pp.
45
52
,
2018
.
11.
N.
Sugiarto
,
U. T.
Kartini
, and
S. I.
Haryudo
, “
PEMODELAN HYBRID CONVOLUTIONAL BACKPROPAGATION NEURAL NETWORK UNTUK PERAMALAN BEBAN JANGKA SANGAT PENDEK BERDASARKAN MINIMALISASI BIAYA LISTRIK
,”
JURNAL TEKNIK ELEKTRO
, vol.
10
, no.
2
, pp.
463
472
,
2021
.
12.
S. J.
Hutabarat
,
A. B.
Setiawan
, and
J.
Rohman
, “
Optimasi Deteksi Radio Frequency Identificasion (Rfid) Menggunakan Metode Complex Valued Naural Network (Cvnn
),"
Prosiding SNATIF
, pp.
275
282
,
2017
.
13.
P.
Virtue
,
X. Y.
Stella
, and
M.
Lustig
, "
Better than real: Complex-valued neural nets for MRI fingerprinting,"
2017
:
IEEE
, pp.
3953
3957
.
14.
W.
Zhang
,
A.
Maleki
, and
M. A.
Rosen
, “
A heuristic-based approach for optimizing a small independent solar and wind hybrid power scheme incorporating load forecasting
,”
Journal of Cleaner Production
, vol.
241
, p.
117920
,
2019
.
15.
A.
Faruq
,
S. S.
Abdullah
,
A.
Marto
,
M. A. Abu
Bakar
,
S. F. Mohd
Hussein
, and
C. M. Che
Razali
, “
The use of radial basis function and non-linear autoregressive exogenous neural networks to forecast multi-step ahead of time flood water level
,”
International Journal of Advances in Intelligent Informatics
, vol.
5
, no.
1
, pp.
1
10
,
2019
.
16.
U.
Sudibyo
,
D. P.
Kusumaningrum
,
E. H.
Rachmawanto
, and
C. A.
Sari
, “
Optimasi Algoritma Learning Vector Quantization (Lvq) Dalam Pengklasifikasian Citra Daging Sapi Dan Daging Babi Berbasis Glcm Dan Hsv
,”
Simetris: Jurnal Teknik Mesin, Elektro dan Ilmu Komputer
, vol.
9
, no.
1
, pp.
1
10
,
2018
.
17.
Z.-X.
Wang
,
Q.
Li
, and
L.-L.
Pei
, “
A seasonal GM (1, 1) model for forecasting the electricity consumption of the primary economic sectors
,”
Energy
, vol.
154
, pp.
522
534
,
2018
.
This content is only available via PDF.
You do not currently have access to this content.