Human activities today are very dependent on the use of electricity ranging from simple activities to large activities. It has an impact on increasing electricity demand. At PLT EBT Baron Technopark Yogyakarta, electricity needs are generated by themselves. However, PLT EBT itself has a fluctuating level of electricity production depending on the natural phenomena around it. Therefore, it is necessary to plan for the supply of electricity to balance the electrical power generated, prevent blackouts, and better energy sources management to deal with fluctuating electrical energy production. One way to balance electric power with power demand in conditions of fluctuating electricity production is to perform accurate load forecasting in the future. This study uses the Artificial Neural Network (ANN) method using data on the electricity load of PLT EBT Baron Technopark Yogyakarta from October to November 2021. In the training process, the best network model was obtained with input_width = 48, Train_size = 0.8, and build model = 64, 32, 32 where the MSE value is 0.001 and MAPE is 8.03%.

1.
R. R. E.
Putra
,
S.
Afriani
,
N. P.
Miefthawati
, and
M.
Jelita
, “
Analisis Teknis-Ekonomi Pembangkit Listrik Tenaga Hybrid Solar PV/Biogas off Grid System
,”
SITEKIN: Jurnal Sains, Teknologi dan Industri
, vol.
18
, no.
1
, pp.
17
23
,
2020
.
2.
A.
Baliyan
,
K.
Gaurav
, and
S. K.
Mishra
, “
A review of short term load forecasting using artificial neural network models
,”
Procedia Computer Science
, vol.
48
, pp.
121
125
,
2015
.
3.
Y.
Chen
et al, “
Short-term load forecasting: Similar day-based wavelet neural networks
,”
IEEE Transactions on Power Systems
, vol.
25
, no.
1
, pp.
322
330
,
2009
.
4.
G. A.
Adepoju
,
S. O. A.
Ogunjuyigbe
, and
K. O.
Alawode
, “
Application of neural network to load forecasting in Nigerian electrical power system
,”
The pacific journal of science and technology
, vol.
8
, no.
1
, pp.
68
72
,
2007
.
5.
I.
Amarulloh
,
U. T.
Kartini
, and
S. I.
Haryudo
, “
PERAMALAN DAYA LISTRIK JANGKA PENDEK PADA SMART GRID PHOTOVOLTAIC MENGGUNAKAN METODE AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA) DENGAN PENGARUH SENSOR SUHU PADA MODE HYBRID
,”
JURNAL TEKNIK ELEKTRO
, vol.
10
, no.
3
, pp.
769
781
,
2021
.
6.
B. I.
Lukita
,
S.
Handoko
, and
K.
Karnoto
, “
ANALISIS PROYEKSI KEBUTUHAN ENERGI LISTRIK DI PROVINSI DI YOGYAKARTA MENGGUNAKAN METODE LOGIKA FUZZY
,”
Transient: Jurnal Ilmiah Teknik Elektro
, vol.
7
, no.
2
, pp.
560
565
,
2018
.
7.
D.
Setyowati
, “
Prakiraan Kebutuhan Energi Listrik Dengan Jaringan Saraf Tiruan (Artificial Neural Network) Metode Backpropagation Tahun 2020-2025
,”
Jurnal EECCIS
, vol.
14
, no.
1
, pp.
6
9
,
2020
.
8.
N.
Setyawan
,
M.
Nasar
, and
N.
Mardiyah
, "
Jaya-Neural Network for Server Room Temperature Forecasting Through Sensor Network
," pp.
428
431
:
IEEE
.
9.
A.
Pandey
and
A.
Jain
, “
Comparative analysis of KNN algorithm using various normalization techniques
,”
International Journal of Computer Network and Information Security
, vol.
9
, no.
11
, p.
36
,
2017
.
10.
M.
Learning
, “
Information: Dulles
,”
VA, USA
,
2020
.
11.
S.
Jadhav
,
D.
Rahul
, and
A.
Sapkal
,
Application of Communication Computational Intelligence and Learning: Proceeding of National Conference on Communication, Computational Intelligence and Learning (NCCC IL 2021), December 16th–17th
Pune, India
.
Taylor & Francis
,
2022
.
This content is only available via PDF.
You do not currently have access to this content.