In this paper, Aactivation of 3D printed PLA/Carbon with through electroplating at various voltages is investigated. The activated electrode was employed with water electrolysis to determine the reactivity for the hydrogen production. The objectives are to activate 3D printed PLA with nickel promoter, investigate the effect of voltage on the electrode morphology and evaluate the electrocatalytic reactivity. The electrodes were designed by using Solidwork and printed by using Fused Deposition Modelling 3D printer. Electrodeposition was conducted by using different voltages to decorate the electrodes with metallic promoters in order to activate them for the Hydrogen Evolution Reaction at the cathode. The morphology of the plated electrode electrodeposition was observed by using optical microscopy (OM) and Scanning Electron Microscope (SEM). The activated electrode reactivity was then evaluated by employing electrocatalysis, i.e., hydrogen evolution reaction. The electrode plated with Ni at 15V for 60 minutes produced the highest amount of hydrogen gas compared to other. However, further investigation by prolonging the time for 5V electroplating process showed higher hydrogen gas production compared to 15V 60 minutes electroplated electrode. Low voltage resulted in good more uniform nickel coating, while high voltage caused the coating to be peeled off as observed by scanning electron microscope & optical microscope.

1.
T.D.
Ngo
,
A.
Kashani
,
G.
Imbalzano
,
K.T.Q.
Nguyen
, and
D.
Hui
,
Compos B Eng
143
,
172
(
2018
).
2.
T.H.M.
Siddique
,
I.
Sami
,
M.Z.
Nisar
,
M.
Naeem
,
A.
Karim
, and
M.
Usman
,
2019 2nd International Conference on Latest Trends in Electrical Engineering and Computing Technologies, INTELLECT 2019
(
2019
).
3.
D.
Fan
,
Y.
Li
,
X.
Wang
,
T.
Zhu
,
Q.
Wang
,
H.
Cai
,
W.
Li
,
Y.
Tian
, and
Z.
Liu
,
Front Pharmacol
11
,
122
(
2020
).
4.
N.
Shahrubudin
,
T.C.
Lee
, and
R.
Ramlan
,
Procedia Manuf
35
,
1286
(
2019
).
5.
M.J.
Whittingham
,
R.D.
Crapnell
,
E.J.
Rothwell
,
N.J.
Hurst
, and
C.E.
Banks
,
Talanta Open
4
,
100051
(
2021
).
6.
M.P.
Browne
,
E.
Redondo
, and
M.
Pumera
,
Chem Rev
120
,
2783
(
2020
).
7.
G.
Chen
,
X.
Liang
,
P.
Zhang
,
S.
Lin
,
C.
Cai
,
Z.
Yu
, and
J.
Liu
,
Adv Funct Mater
32
,
2113262
(
2022
).
8.
L.
Shahzadi
,
F.
Maya
,
M.C.
Breadmore
, and
S.C.
Thickett
,
ACS Appl Polym Mater
(
2022
).
9.
C.
Xu
,
P.
Chen
,
B.
Hu
,
Q.
Xiang
,
Y.
Cen
,
B.
Hu
,
L.
Liu
,
Y.
Liu
,
D.
Yu
, and
C.
Chen
,
CrystEngComm
22
,
4228
(
2020
).
10.
C.
Yang
,
A.K.
Manohar
, and
S.R.
Narayanan
,
J Electrochem Soc
164
,
A418
(
2017
).
11.
M.
Qiu
,
H.
Liu
,
J.
Luo
,
B.
Tawiah
,
S.
Fu
, and
H.
Jia
,
Chemical Communications
58
,
993
(
2022
).
12.
E.Y.
Jung
,
J.
Bang
,
J.H.
Hwang
,
D.H.
Han
,
Y.
Kim
,
H.
Kim
, and
W.
Jeon
,
Nanotechnology
32
,
045201
(
2020
).
13.
B.
Ren
,
X.F.
Lin
,
J.W.
Yan
,
B.W.
Mao
, and
Z.Q.
Tian
,
Journal of Physical Chemistry B
107
,
899
(
2003
).
14.
S.
Sarkis
and
X.
Huang
,
Journal of Physical Chemistry C
124
,
20746
(
2020
).
15.
Y.-J.
Lee
,
D.-J.
Park
,
J.-Y.
Park
, and
Y.
Kim
,
Sensors (Basel)
8
,
6154
(
2008
).
16.
J.S.
Dondapati
,
A.R.
Thiruppathi
,
A.
Salverda
, and
A.
Chen
,
Electrochem Commun
124
,
106946
(
2021
).
18.
Á.
Torrinha
,
N.
Jiyane
,
M.
Sabela
,
K.
Bisetty
,
M.C.B.S.M.
Montenegro
, and
A.N.
Araújo
,
Scientific Reports 2020 10:1
10
,
1
(
2020
).
19.
H.L.
Andersen
,
L.
Djuandhi
,
U.
Mittal
, and
N.
Sharma
,
Adv Energy Mater
11
,
2102693
(
2021
).
20.
Y.
Zhao
,
X.
Xie
,
J.
Zhang
,
H.
Liu
,
H.J.
Ahn
,
K.
Sun
, and
G.
Wang
,
Chemistry – A European Journal
21
,
15908
(
2015
).
21.
Z.
Kou
,
T.
Wang
,
Y.
Cai
,
C.
Guan
,
Z.
Pu
,
C.
Zhu
,
Y.
Hu
,
A.M.
Elshahawy
,
J. Wang, and S. Mu, Small Methods
2
,
1700396
(
2018
).
22.
S.
Biswas
,
R.G.
Jadhav
, and
A.K.
Das
,
ACS Appl Nano Mater
1
,
175
(
2018
).
23.
S.
Nehache
,
M.
Semsarilar
,
A.
Deratani
,
M.
In
,
P.
Dieudonné-George
,
J. Lai Kee
Him
,
P.
Bron
, and
D.
Quémener
,
Polym Chem
9
,
193
(
2017
).
24.
J.
Wang
,
L.
Zhang
,
X.
Guo
,
Y.
Qu
,
W.
Pang
, and
X.
Chen
,
CrystEngComm
20
,
6387
(
2018
).
25.
V.
Malgras
,
Q.
Ji
,
Y.
Kamachi
,
T.
Mori
,
F.K.
Shieh
,
K.C.W.
Wu
,
K.
Ariga
, and
Y.
Yamauchi
,
88
,
1171
(
2015
).
26.
U.
Rost
,
P.
Podleschny
,
M.
Schumacher
,
R.
Muntean
,
D.T.
Pascal
,
C.
Mutascu
,
J.
Koziolek
,
G.
Marginean
, and
M.
Brodmann
,
IOP Conf Ser Mater Sci Eng
416
,
012013
(
2018
).
27.
L.F.
Arenas
,
C. Ponce
de León
, and
F.C.
Walsh
,
Curr Opin Electrochem
16
,
1
(
2019
).
28.
A.
Ambrosi
and
M.
Pumera
,
Adv Funct Mater
28
,
1700655
(
2018
).
29.
C.Y.
Lee
,
A.C.
Taylor
,
S.
Beirne
, and
G.G.
Wallace
,
Adv Energy Mater
7
,
1701060
(
2017
).
30.
C.
Iffelsberger
,
S.
Ng
, and
M.
Pumera
,
Appl Mater Today
20
,
100654
(
2020
).
31.
J.C.
Bui
,
J.T.
Davis
, and
D. v.
Esposito
,
Sustain Energy Fuels
4
,
213
(
2019
).
32.
C.Y.
Foo
,
H.N.
Lim
,
M.A.
Mahdi
,
M.H.
Wahid
, and
N.M.
Huang
,
Scientific Reports 2018 8:1
8
,
1
(
2018
).
33.
K.P. Akshay
Kumar
,
K.
Ghosh
,
O.
Alduhaish
, and
M.
Pumera
,
Electrochem Commun
122
,
106890
(
2021
).
This content is only available via PDF.
You do not currently have access to this content.