Hydroxyapatite which also known as HA is a natural mineral from the Calcium Phosphate (CaP) family. HA can be used as a drug delivery agent and a gene delivery agent in biomedicine. It has been used widely in biomedical applications due to its excellent biocompatibility and bioactivity properties. Natural HA, in addition to commercial HA, can be obtained from calcium-containing materials. Product waste such as shells, scales, and bones had an impact on the daily, resulting in pollution of the environment. Hence, this study was conducted to extract biological natural HA derived from the eggshells waste from household. The eggshells are a low-cost source to extract the HA that can applied to health industries. The main goal of this study was to produce HA from eggshells which Calcium Carbonate (CaCO3). The eggshells have been calcined at two different temperatures to produce HA from the calcium precursor which were CaP raw, calcined CaP 800℃, and calcined CaP 1000℃. The samples were characterized using X-ray diffraction (XRD) for mineralogy, Scanning Electron Microscopy (SEM) for morphology, and Fourier-transform infrared spectroscopy (FTiR) for functional group analysis. The presence of derived HA in standard HA was confirmed through XRD analysis. The FTiR spectra confirmed that organic compounds had been removed during the calcination process. Calcined CaP produced had similar quality with pure HA. Therefore, HA extracted from eggshells can be used as a substitute for currently available synthetic materials in biomedical engineering.

1.
Q.
Wang
,
C.
Chen
,
W.
Liu
,
X.
He
,
N.
Zhou
,
D.
Zhang
, … and
W.
Huang
,
Sci. Rep.
,
7
, February,
1
13
(
2017
).
2.
D. J.
Lee
,
Y. T.
Lee
,
R.
Zou
,
R.
Daniel
and
C. C.
Ko
,
Sci. Rep.
,
7
,
1
,
1
14
(
2017
).
3.
S.
Aarthy
,
D.
Thenmuhil
,
G.
Dharunya
and
P.
Manohar
,
J. Mater. Sci. Mater. Med.
,
30
,
2
(
2019
).
4.
S. F.
Mansour
,
S. I.
El-Dek
and
M. K.
Ahmed
,
Sci. Rep.
,
7
,
1
21
(
2017
).
5.
N. A. S. Mohd
Pu’ad
,
J.
Alipal
,
H. Z.
Abdullah
,
M. I.
Idris
and
T. C.
Lee
,
Mater. Today Proc.
,
42
,
172
177
(
2019
).
6.
H.
Khandelwal
and
S.
Prakash
,
J. of Minerals and Materials Characterization and Engineering
,
4
(
2
),
119
126
(
2020
).
7.
M.
Sadat-Shojai
,
M.
Khorasani
,
E.
Dinpanah-Khoshdargi
and
A.
Jamshidi
,
Acta Biomater.
,
9
(
8
),
7591
7621
(
2013
).
8.
N. D.
Malau
and
F.
Adinugraha
,
J. Phys. Conf. Ser.
,
1563
(
2020
).
9.
S.
Wu
,
H.
Hsu
,
S.
Hsu
,
Y.
Chang
and
W.
Ho
,
Integr. Med. Res.
,
4
,
85
90
(
2016
).
10.
D.
Ismik
,
D. S.
Mansuroglu
and
Y. M.
Sahin
,
IEEE
(
2017
).
11.
S. D.
Waldman
,
M. D.
Grynpas
,
R. M.
Pilliar
and
R. A.
Kandel
,
J. Biomed. Mater. Res.
,
62
(
3
),
323
330
(
2002
).
12.
Y.
Wang
,
X.
Ren
,
X.
Ma
,
W.
Su
,
Y.
Zhang
,
X.
Sun
and
X.
Li
,
Crystal Growth & Design
,
15
(
4
),
1949
1956
(
2015
).
13.
D. S.
Gomes
,
A. M. C.
Santos
,
G. A.
Neves
,
R. R.
Menezes
,
C.
Grande
and
C.
Grande
,
Cerâmica
,
65
,
282
302
(
2019
).
14.
S. E.
Cahyaningrum
,
N.
Herdyastuty
,
B.
Devina
and
D.
Supangat
,
IOP Conference Series: Materials Science and Engineering
,
299
(
1
),
012039
(
2018
).
15.
E.
Siswoyo
,
MATTER Int. J. Sci. Technol.
,
4
,
40
45
(
2018
).
16.
E. M.
Rivera
,
M.
Araiza
,
W.
Brostow
,
V. M.
Castano
,
J. R.
Dıaz-Estrada
, R., Hernández, and
J. R.
Rodrıguez
,
Materials Letters
,
41
(
3
),
128
134
(
1999
).
17.
JCPDS
Card No. 9-432. (
1994
).
18.
T.
Goto
,
I. Y.
Kim
,
K.
Kikuta
and
C.
Ohtsuki
,
Mater. Sci. Eng. C
,
32
(
3
),
397
403
(
2012
).
19.
G.
Muralithran
and
S.
Ramesh
,
Ceram. Int.
,
26
(
2
),
221
230
(
2000
).
20.
S.
Ramesh
,
Z. Z.
Loo
,
C. Y.
Tan
,
W. J. K.
Chew
,
Y. C.
Ching
and
F.
Tarlochan
,
Ceram. Int.
,
44
(
9
),
10525
10530
(
2018
).
21.
S.
Ramesh
,
A. N.
Natasha
,
C. Y.
Tan
,
L. T.
Bang
,
S.
Ramesh
and
C. Y.
Ching
,
Ceram. Int.
,
42
(
6
),
7824
7829
(
2016
).
This content is only available via PDF.
You do not currently have access to this content.