Bamboo fiber has gained popularity in Malaysia and it is increasingly used in the production of green composites such as construction applications, roofs, flooring, and sports equipment. In this study, the Bamboo Schizostachyum Grande fiber was treated with a silane coupling agent to examine the physical characterization using TGA, SEM, and FTIR. The SEM was analyzed before (untreated) and after treatment (treated) with different weights of bamboo fiber. The results of SEM demonstrate that the bamboo fiber was treated, and the surface morphology and chemical elements reacting to silane coupling agents were improved, which shows the layer and bamboo fiber were expanded up to 7 mm than untreated. TGA results shows of the thermal degradation of untreated bamboo fiber occur at 341.08°C, which is significantly lower than the thermal degradation of 0.3 g of treated bamboo fiber at 354.84°C. It reveals that the surface compatibility and bonding strength of bamboo fiber treated with a silane coupling agent are more effective than untreated bamboo. The highest weight of bamboo fiber shows good thermal stability was 0.7 g. FTIR spectrum shows the peak from 2890 cm−1 to 2898 cm−1 indicating that treated fiber was absorbed by silane coupling agents, but the different weights of bamboo fiber exhibited significantly no effect, and the results show treated 0.3, 0.4. 0.6, 0.7 g peaks continuously from 2890 to 2898 cm−1 while the untreated bamboo fiber cellulose structure did not show any additional groups at this range. Hence, this silane coupling agent treatment performed better than untreated and it has the potential to be used in insulating and hydrophobic applications.

1.
Song
,
K.
,
Ren
,
X.
, &
Zhang
,
L.
(
2017
).
Bamboo fiber-polymer composites: overview of fabrications, mechanical characterizations and applications
.
Green biocomposites
,
209
246
.
2.
Popat
,
T. V.
, &
Patil
,
A. Y.
(
2017
).
A review on bamboo fiber composites
.
IRE Journals
,
1
(
2
).
3.
Junior
,
A. C.
,
Barreto
,
A. C. H.
,
Rosa
,
D. S.
,
Maia
,
F. J. N.
,
Lomonaco
,
D.
, &
Mazzetto
,
S. E.
(
2015
).
Thermal and mechanical properties of biocomposites based on a cashew nut shell liquid matrix reinforced with bamboo fibers
.
Journal of Composite Materials
,
49
(
18
),
2203
2215
.
4.
Khalil
,
H. A.
,
Bhat
,
I. U. H.
,
Jawaid
,
M.
,
Zaidon
,
A.
,
Hermawan
,
D.
, &
Hadi
,
Y. S.
(
2012
).
Bamboo fiber reinforced biocomposites: A review
.
Materials & Design
,
42
,
353
368
.
5.
Chin
,
S. C.
,
Tee
,
K. F.
,
Tong
,
F. S.
,
Ong
,
H. R.
, &
Gimbun
,
J.
(
2020
).
Thermal and mechanical properties of bamboo fiber reinforced composites
.
Materials Today Communications
,
23
,
100876
.
6.
Sawpan
,
M. A.
,
Pickering
,
K. L.
, &
Fernyhough
,
A.
(
2012
).
Flexural properties of hemp fibre reinforced polylactide and unsaturated polyester composites
.
Composites Part A: Applied Science and Manufacturing
,
43
(
3
),
519
526
.
7.
Siy
,
B. S. C.
,
Tan
,
J. A. X. C.
,
Viron
,
K. P.
,
Sajor
,
N. J. B.
,
Santos
,
G. N. C.
, &
Penaloza
,
D. P.
(
2020
).
Application of silane coupling agents to abaca fibers for hydrophobic modification
.
Cell Chem Technol
,
54
(
3-4
),
365
369
.
8.
Koohestani
,
B. A. B. A. K.
,
Darban
,
A. K.
,
Mokhtari
,
P.
,
Yilmaz
,
E. R. O. L.
, &
Darezereshki
,
E. S. M. A. E. E. L.
(
2019
).
Comparison of different natural fiber treatments: a literature review
.
International Journal of Environmental Science and Technology
,
16
(
1
),
629
642
.
9.
Joseph
,
K.
,
Thomas
,
S.
, &
Pavithran
,
C.
(
1996
).
Effect of chemical treatment on the tensile properties of short sisal fibre-reinforced polyethylene composites
.
Polymer
,
37
(
23
),
5139
5149
.
10.
Kausar
,
A.
, &
Taherian
,
R.
(
2019
).
Electrical conductivity behavior of polymer nanocomposite with carbon nanofillers
.
Electrical Conductivity in Polymer-Based Composites Experiments, Modelling, and Applications; Plastics Design Library
,
41
72
.
11.
Shah
,
D. U.
,
Sharma
,
B.
, &
Ramage
,
M. H.
(
2018
).
Processing bamboo for structural composites: Influence of preservative treatments on surface and interface properties
.
International Journal of Adhesion and Adhesives
,
85
,
15
22
.
12.
Zhou
,
F.
,
Cheng
,
G.
, &
Jiang
,
B.
(
2014
).
Effect of silane treatment on microstructure of sisal fibers
.
Applied Surface Science
,
292
,
806
812
.
13.
Sepe
,
R.
,
Bollino
,
F.
,
Boccarusso
,
L.
, &
Caputo
,
F.
(
2018
).
Influence of chemical treatments on mechanical properties of hemp fiber reinforced composites
.
Composites Part B: Engineering
,
133
,
210
217
.
14.
Agrawal
,
R.
,
Saxena
,
N. S.
,
Sharma
,
K. B.
,
Thomas
,
S.
, &
Sreekala
,
M. S.
(
2000
).
Activation energy and crystallization kinetics of untreated and treated oil palm fibre reinforced phenol formaldehyde composites
.
Materials Science and Engineering: A
,
277
(
1-2
),
77
82
.
15.
Li
,
Z.
,
Wan
,
J.
,
Li
,
Y.
,
Li
,
Y.
,
Zhao
,
F.
, &
Zhao
,
S.
(
2019
).
Effects of coupling agents on the properties of an NR/SBR matrix and its adhesion to continuous basalt fiber cords
.
Journal of Applied Polymer Science
,
136
(
8
),
47098
.
16.
Hu
,
G.
,
Cai
,
S.
,
Zhou
,
Y.
,
Zhang
,
N.
, &
Ren
,
J.
(
2018
).
Enhanced mechanical and thermal properties of poly (lactic acid)/bamboo fiber composites via surface modification
.
Journal of Reinforced Plastics and Composites
,
37
(
12
),
841
852
.
17.
Liew
,
F. K.
,
Hamdan
,
S.
,
Rahman
,
M. R.
,
Rusop
,
M.
, &
Khan
,
A.
(
2020
).
Thermo-mechanical properties of jute/bamboo/polyethylene hybrid composites: The combined effects of silane coupling agent and copolymer
.
Polymer Composites
,
41
(
11
),
4830
4841
.
18.
Li
,
Y.
,
Jiang
,
L.
,
Xiong
,
C.
, &
Peng
,
W.
(
2015
).
Effect of different surface treatment for bamboo fiber on the crystallization behavior and mechanical property of bamboo fiber/nanohydroxyapatite/poly (lactic-co-glycolic) composite
.
Industrial & Engineering Chemistry Research
,
54
(
48
),
12017
12024
.
19.
Wang
,
Q.
,
Zhang
,
Y.
,
Liang
,
W.
,
Wang
,
J.
, &
Chen
,
Y.
(
2020
).
Effect of silane treatment on mechanical properties and thermal behavior of bamboo fibers reinforced polypropylene composites
.
Journal of Engineered Fibers and Fabrics
,
15
,
1558925020958195
.
20.
Long
,
H.
,
Wu
,
Z.
,
Dong
,
Q.
,
Shen
,
Y.
,
Zhou
,
W.
,
Luo
,
Y.
, … &
Dong
,
X.
(
2019
).
Mechanical and thermal properties of bamboo fiber reinforced polypropylene/polylactic acid composites for 3D printing
.
Polymer Engineering & Science
,
59
(
2
),
E247
E260
.
This content is only available via PDF.
You do not currently have access to this content.