In the oil and gas industry, managing large quantities of produced water on a daily basis as the production blocks mature over time can be challenging, alarming for an effective and equally efficient treatment system to be embarked. A great solution would be to transform the produced water into a solar pond. Salt-gradient solar ponds (SGSP) are capable of storing large amounts of heat that could be used for producing electricity. Studies relevant to sodium bicarbonate solar ponds and its corresponding low-grade energy harvest are still at a pioneering stage, particularly in Malaysia. Thus, this paper investigates possible techniques and approaches to optimize thermal efficiency of solar ponds, using simulated produced water with high sodium bicarbonate content for power generation. It was determined that the best time to acquire the highest lower convective zone (LCZ) temperature is between 12 to 3 pm, when sun peaks right above the head. Also, addition of 18.8 litres of hydrochloric acid (HCl) had significantly reduced the pH and turbidity level of the pond, removing algae while improving solution clarity and heat storage at LCZ. Utilization of neoprene rubber sheet and black soil as insulators had proven to optimize the solar pond thermal efficiency, yielding highest LCZ temperature of 52.3°C with a maximum temperature difference of 18°C. Besides, the application of thermoelectric generator (TEG) to convert heat energy into sensible power output was explored through simple laboratory-scaled design and set-up, where a total of eight TEG modules were required to produce 0.28W of electricity.

1.
A. Che
Arshad
,
A. H. M
Basri
,
C. A.
Peterson
,
F.
Rahim
,
M. Z. Mohd
Faiz
, and
M. G. M
Anuar
, “The Oasis Solution-Turning Challenges into Opportunities via Integrated Unconventional Sustainable Solution in Managing Waste from Petroleum Operation”, in
Proceedings of the SPE Symposium: Asia Pacific Health, Safety, Security, Environment and Social Responsibility (2019)
(
Society of Petroleum Engineers
,
2019
).
2.
C.
Ridame
, and
C.
Guieu
,
Limnology and Oceanography
47
,
856
869
(
2002
).
3.
K.
Mawien
, “The Oasis Solution Proof of Concept: Development of Sodium Bicarbonate Based Solar Pond for Power Generation,” BChE. thesis,
University of Technology PETRONAS
,
2020
.
4.
B.
Guo
,
S.
Song
,
A.
Ghalambor
, and
T. R.
Lin
,
Offshore Pipelines: Design, Installation, and Maintenance
(
Elsevier, Gulf Professional Publishing
,
Amsterdam
,
2014
), p.
13
20
.
5.
E.
Allison
and
B.
Mandler
, “
Water in the Oil and Gas Industry: An overview of the many roles of water in oil and gas operations
”, (
American Geosciences Institute
,
2018
). Available at https://www.americangeosciences.org/sites/default/files/AGI_PE_WaterIntro_web_final.pdf.
6.
S.
Kwon
,
E. J.
Sullivan
,
L. E.
Katz
,
R. S.
Bowman
, and
K. A.
Kinney
,
Water Environment Research
83
,
843
854
(
2011
).
7.
H.
Kurt
,
F.
Halici
, and
A. K.
Binark
,
Energy Conversion and Management
41
,
939
951
(
2000
).
8.
T. A.
Newell
, and
R. F.
Boehm
,
Journal of Solar Energy Engineering
104
,
280
285
(
1982
).
9.
L. C.
Ding
,
A.
Akbarzadeh
, and
L.
Tan
,
Renewable and Sustainable Energy Reviews
81
,
799
812
(
2018
).
10.
K.
Julaihie
,
R. A.
Bakar
,
B. B.
Singh
,
M.
Remeli
, and
A.
Oberoi
,
IOP Conference Series: Earth and Environmental Science
, (
IOP Publishing Ltd
,
Kuala Lumpur
,
2019
), p.
1
7
.
11.
P.
Pramanik
, and
P.
Aggarwal
,
African Journal of Agricultural Research
8
,
3679
3687
(
2013
).
12.
B.
Singh
,
A.
Saoud
,
M. F.
Remeli
,
L. C.
Ding
,
A.
Date
, and
A.
Akbarzadeh
,
Jurnal Teknologi
76
, (
2015
).
13.
S. M. F. S.
Mahizan
,
B.
Singh
,
A. N.
Nyandang
,
N. A.
Bahrin
,
M. F.
Remeli
, and
A.
Oberoi
, “Salinity gradient solar pond construction and maintenance”, in
International Symposium on Green and Sustainable Technology,
(
AIP Publishing
,
2019
), Vol.
2157
.
14.
N.
Malik
,
A.
Date
,
J.
Leblanc
,
A.
Akbarzadeh
, and
B.
Meehan
,
Solar Energy
85
,
2987
2996
(
2011
).
15.
D.
Aidoud
,
A.
Etiemble
,
D.
Guy-Bouyssou
,
E.
Maire
,
J.
Le Bideau
,
D.
Guyomard
, and
B.
Lestriez
,
Journal of Power Sources
330
,
92
103
(
2016
).
16.
O. A. E.
Abdalla
,
Hydrogeology Journal
17
,
679
692
(
2008
).
17.
N. A.
Baharin
,
I. F. M.
Yazit
,
B. S. B.
Singh
,
M. F.
Remeli
, and
A. S.
Oberoi
,
Journal of Mechanical Engineering
4
,
217
235
(
2017
).
18.
A. A.
Dehghan
,
A.
Movahedi
, and
M.
Mazidi
,
Solar Energy
97
,
273
284
(
2013
).
19.
L.
Dou
,
K.
Xiao
,
D.
Cheng
,
B.
Shi
, and
Z.
Li
,
Marine and Petroleum Geology
24
,
129
144
(
2007
).
20.
A. A.
El-Sebaii
,
M. R. I.
Ramadan
,
S.
Aboul-Enein
, and
A. M.
Khallaf
,
Renewable and Sustainable Energy Reviews
15
,
3319
3325
(
2011
).
21.
A.
Fakhru’l-Razi
,
A.
Pendashteh
,
L. C.
Abdullah
,
D. R. A.
Biak
,
S. S.
Madaeni
, and
Z. Z.
Abidin
,
Journal of Hazardous Materials
170
,
530
551
(
2009
).
22.
A. H.
Sayer
,
H.
Al-Hussaini
, and
A. N.
Campbell
,
Solar Energy
158
,
207
217
(
2017
).
23.
See supplementary material at https://sudanreeves.org/2014/09/10/map-of-oil-concession-areas-in-sudan-and-south-sudan/ for the map of oil concession areas in Sudan and South Sudan.
24.
See supplementary material at https://www.besttimetovisit.co.nz/south-sudan/melut-2968865/ for Melut weather and climate.
25.
See supplementary material at https://tcktcktck.org/south-sudan/upper-nile/melut for Melut, Upper Nile, South Sudan climate zone, monthly averages, and historical weather data.
26.
See supplementary material at https://energycapitalpower.com/top-10-africas-leading-oil-producers-in-2021/ for the list of Africa’s leading oil producers in
2021
.
27.
See supplementary material at https://www.energy.gov/eere/solar/solar-radiation-basics for information on solar radiation basics.
This content is only available via PDF.
You do not currently have access to this content.