Cellulose, highly abundant biopolymer biomass, offers a sustainable alternative to fossil fuels. The conversion of cellulose to value-added chemicals occurs by breaking the cellulose β-1,4-glycosidic bonds via hydrolysis. Levulinic acid (LA), a very versatile building block that can be used as a precursor in polymers, resins, medicines, oxygenated fuel additives, and liquid biofuels, can be produced from cellulose. During acid hydrolysis, reaction temperature and substrate loading are frequently highlighted as important factors in the production of LA. As a result, this research aims to investigate both of these factors, especially the yield of LA. The reaction temperature and substrate loading were varied from 110-170 °C and 0.6-1.2 g respectively. The catalyst was synthesized using wet impregnation method to incorporate 20 wt.% SO 2-on silica-alumina (SiO2-Al2O2) and further characterized using Fourier Transforms Infrared Spectroscopy (FTIR). The catalytic reaction was carried out in a batch reactor. According to the results obtained, it can be highlighted that the reaction temperature of 170 °C and 0.8 g of cellulose loading at a reaction time of 2 hrs were ideal for the reaction. The yield of LA was as high as 65.6%.

1.
D.
Klemm
,
B.
Heublein
,
H. P.
Fink
, and
A.
Bohn
,
Angew. Chem. Int.
Ed.
3358 – 3393
,
44
(
2005
).
2.
H.
Kobayashi
and
A.
Fukuoka
,
Green Chem.
1740–1763
,
15
(
2013
).
3.
N.
Andersen
,
Appl. Microbiol
.
4
(
2007
).
4.
M. E.
Himmel
,
S. Y.
Ding
,
D. K.
Johnson
,
W. S.
Adney
,
M. R.
Nimlos
,
J. W.
Brady
and
T. D.
Foust
,
Science
804-807
,
315
(
2007
).
5.
A. S.
Alikasturi
,
S.
Shaharuddin
,
M. R.
Anuar
,
A.
Radzuan
,
M.
Radzi
,
A. S F. M.
Asnawi
,
A. N.
Husin
,
N. A.
Aswandi
and
A. I.
Mustapha
,
Mater. Today: Proc.
22148-22153
,
5
(
2018
).
6.
B.
Girisuta
,
K.
Dussan
,
D.
Haverty
,
J. J.
Leahy
, and
M. H. B.
Hayes
,
Chem. Eng. J.
61–70
,
217
(
2013
).
7.
E.
Christensen
,
A.
Williams
,
S.
Paul
,
S.
Burton
and
R.
McCormick
,
Energy Fuels
5422–5428
,
25
(
2011
).
8.
S.
De
,
S.
Duttab
, and
B.
Saha
,
Catal. Sci. Technol
,
7364–7385
,
7364
(
2016
).
9.
F.
Guo
,
Z.
Fang
,
C. C.
Xu
, and
R. L.
Smith
,
In Bioresour. Technol.
35–41
,
38
(
2012
).
10.
L.
Peng
,
L.
Lin
,
J.
Zhang
,
J.
Zhuang
,
B.
Zhang
, and
Y.
Gong
,
Molecules
5258-5272
,
15
(
2010
).
11.
J.
Finzel
(
2018
), Bachelor thesis,
Worcester Polytechnic Institute
,
United State
, 2018.
12.
E. J. M.
Hensen
,
D. G.
Poduval
,
P. C. M. M.
Magusin
,
A. E.
Coumans
and
J. A. R
Veen
,
J. Catal.
201– 218
,
269
(
2010
).
13.
H.
Hideshi
,
Solid Acid Catalysis
(
CRC Press
,
Boca Raton, FL
,
2016
). p.
24
.
14.
A. H.
Brennan
,
W
Hoagland
, and
D. J.
Schell
,
USA
:
Biotechnol. Bioeng. Symp
. (
1986
).
15.
M. K.
Yadav
,
A. V.
Kothari
, and
D. G.
Naik
,
Green Chem. Lett. Rev.
181-187
,
2
(
2019
).
16.
H.
Sanaeishoar
,
M.
Sabbaghan
and
F.
Mohave
,
Microporous and Mesoporous Mater.
219-224
,
217
(
2015
).
17.
V. G.
Deshmane
,
S. L.
Owen
,
R. Y.
Abrokwah
and
D.
Kuila
, (
2015
).
J. Mol. Catal. A Chem.
202–213
,
408
(2015).
18.
H. R.
Shaterian
,
M.
Ghashang
and
M.
Feyzi
, (
2008
).
Appl. Catal. A-Gen.
128–133
,
345
(2008).
19.
K.
Atrak
,
A.
Ramazani
, and
S. T.
Fardood
.
J. Mater. Sci.: Mater. Electron.
29
(
2018
).
20.
K. A.
Shah
,
J. K. Parikh, B. Z. Dholakiya and K. C. Maheria, Chem. Pap.
472–483
,
68
(
2014
).
21.
P. N. S. M. M.
Kamal
,
N. I.
Mohamad
,
M. E. A.
Serit
,
N. S. A.
Rahim
,
N. I.
Jimat
and
A.S.
Alikasturi
,
Mater. Today: Proc.
31
(
2020
).
22.
M.
Watanabe
,
Y.
Aizawa
,
T.
Iida
,
T. M.
Aida
,
C.
Levy
,
K.
Sue
, and
H.
Inomata
,
Carbohydr. Res.
1925– 1930
,
340
(
2005
).
23.
J.
Ahlkvist
, Ph. D thesis,
Umeå University
,
Sweden
,
2013
.
24.
D.
Ding
,
J.
Wang
,
J.
Xi
,
X.
Liu
,
G.
Lu
, and
Y.
Wang
,
Green Chem.
3846–3853
,
16
(
2014
).
25.
C.
Devi
,
H.
Kevin
,
J.
Marlie
,
J.
Nyoo
,
F.
Edi
,
S.
Yi
,
H.
Ju
,
D.
Agustin
, and
N.
Sirodj
,
Int. J. Ind. Chem.
401–409
,
7
(
2016
).
26.
N. A. S.
Ramli
and
N. A. S.
Amin
,
Fuel Process. Technol.
487-498
,
163
(
2015
).
27.
C.
Antonetti
,
D.
Licursi
,
S.
Fulignati
,
G.
Valentini
,
A.
Maria
and
R.
Galletti
,
Catal.
6
,
196
(
2016
).
28.
J.
Su
,
F.
Shen
,
M.
Qiu
,
X.
Qi
,
T. J.
Farmer
and
J. H.
Clark
,
Molecules
,
22
,
285
(
2017
).
29.
C.
Liu
,
X
Lu
,
Z.
Yu
,
J.
Xiong
,
H.
Bai
, and
R.
Zhang
,
Catal.
10
,
1006
(
2020
).
30.
B.
Girisuta
,
L. P. B. M.
Janssen
, and
H. J.
Heeres
,
Ind. Eng. Chem. Res.
1696–1708
,
46
(
2007
).
This content is only available via PDF.
You do not currently have access to this content.