Time series is a group of observation values obtained at different points in time with the same time interval. In some empirical studies, time-series data often has its complexity. CPI data is time-series data, so it can be modeled using the time-series analysis method. Time series is a series of observations arranged sequentially according to time in a certain period of time-series data, current observations are related to previous observations. Time and location-related (spatiotemporal) modeling for CPI forecasting can be used. GSTAR stands for generalized space-time autoregressive. to improve prediction accuracy, Exogenous variables were added to the GSTAR model to transform it into the GSTARX model. Eid al-Fitr, Eid al-Adha, Christmas, and New Year, which are the results of calendar fluctuations, as well as increasing fuel prices, are exogenous variables included in GSTARX models for CPI forecasting. The case study in GSTARX modeling is applied to CPI forecasting for five cities in Java, namely Yogyakarta, Semarang, Tegal, Surakarta, and Purwokerto. The purpose of this study was to obtain a suitable GSTARX model for forecasting the CPI for 5 cities in Java. The best model for GSTAR and GSTARX is the normalized weight of cross-correlation with MSE 12.9% and RMSE 19.35%

1.
W. R.
Bell
&
S. C.
Hillmer
,
Modeling time series with calendar variation
,
Journal of the American Statistical Association
,
78
,
526
534
(
1983
).
2.
A. L.
Berlian
,
Y.
Wilandari
, &
H.
Yasin
,
Peramalan Inflasi Menurut Kelompok Pengeluaran Makanan Jadi, Minuman, Rokok dan Tembakau Menggunakan Model Variasi Kalender (Studi Kasus Inflasi Kota Semarang
),
Jurnal Gaussian
,
3
(
4
),
547
556
(
2017
).
3.
W.
Enders
,
Applied Econometric Time Series.
Fourth Edition, (
John Wiley & Sons
,
United States
2015
).
4.
G.
Damodar
,
Basic Econometrics
, (
McGraw-Hill
,
New York
,
2004
).
5.
L.
Irawati
,
T.
Tarno
&
H.
Yasin
,
Peramalan Indeks Harga Konsumen 4 Kota Di Jawa Tengah Menggunakan Model Generalized Space Time Autoregressive (GSTAR
).
Jurnal Gaussian
,
4
,
553
562
, (
2015
).
6.
Z.
Ismail
,
Teori Ekonomi,
(
Dharma Ilmu
,
Bandung
,
2012
).
7.
M. H.
Lee
,
Suhartono
, &
B.
Sanugi
,
Multi-Input Intervention Model for Evaluating the Impact of the Asian Crisis and Terrorist Attacks on Tourist Arrivals
,
J. MATEMATIKA
,
7
,
83
106
(
2010
).
8.
L. M.
Liu
,
Identification of time series models in the presence of calendar variation
.
International Journal of Forecasting
,
2
,
357
372
, (
1986
).
9.
Makridakis
,
McGee
dan Wheelright
.
Introduction to Time Series Analysis and Forecasting
, (
Wiley
,
New Jersey
,
1999
).
10.
D.C.
Montgomery
,
C.L.
Jennings
,
dan M.
Kulachi
,
Introduction to Time Series Analysis and Forecasting,
(
Wiley
,
New Jersey
,
2008
).
11.
S.
Ocampo
, and
N.
Rodriguez
,
An Introductory Review of a Structural VAR-X Estimation and Applications
,
Revista Colombiana de Estadística,
35
,
479
508
, (
2011
).
12.
R.
Paita
,
N.
Nainggolan
, N., &
Y. A.
Langi
,
Model Space Time Autoregressive (STAR) Orde 1 Dan Penerapannya Pada Prediksi Harga Beras Di Kota Manado, Tomohon Dan Kabupaten Minahasa Utara
,
d’CARTESIAN
,
3
,
17
22
(
2014
).
13.
P.E.
Pfeifer
, and
S.J.
Deutsch
,
A Three-Stage Iterative Procedure for Space-Time Modeling. School of Industrial and System Engineering Georgia Institute of Technology Atlanta
,
Technometrics
,
22
,
34
47
(
1980
).
14.
F. K. K.
Putri
,
D.
Kusnandar
, and
N.N.
Debataraja
,
Model Generalized Space Time Autoregressive-X (Gstar-X) Dalam Meramalkan Produksi Kelapa Sawit
.
BIMASTER,
7
,
85
92
, (
2018
).
15.
A.F.
Saputri
,
A.
Hoyyi
, and
S.
Sugito
.
Prediksi Jumlah Penumpang Kereta Api Menggunakan Model Variasi Kalender dengan Deteksi Outlier (Studi kasus: PT. Kereta Api Indonesia DAOP IV Semarang
).
Jurnal Gaussian
,
6
,
281
289
(
2018
).
16.
A.
Sudarsono
,
Jaringan Syaraf Tiruan Untuk Memprediksi Laju Pertumbuhan Penduduk Menggunakan Metode Bacpropagation (Studi Kasus Di Kota Bengkulu
),
Jurnal Media Infotama
,
12
,
61
69
(
2016
).
17.
Suhartono
,
M.H.
Lee
, &
N.A.
Hamzah
,
Calendar Variation Model based on Time Series Regression for Sales Forecast: The Ramadhan Effects, Proceedings of the Regional Conference on Statistical Science 2010 (RCSS’10)
(
Bogor
,
IDN
,
2010
).
18.
K.K.
Ummatin
,
Pengaruh Pdrb, Inflasi, Dan Upah Minimum Terhadap Pengangguran Terbuka Di Daerah Istimewa Yogyakarta Tahun 1987-2017
.
Jurnal Pendidikan dan Ekonomi
,
9
,
179
188
(
2020
).
19.
W.W.S.
Wei
,
Time Series Analysis, Univariate and Multivariate Methods
, (
Addison Wesley Publishing Company
,
Canada
,
2006
).
20.
A.
Widoarjono
,
Ekonometrika Teori dan Aplikasi untuk Ekonomi dan Bisnis. Edisi Kedua
(
FE UII
,
Yogyakarta
,
2007
).
21.
A.
Yuliandari
,
Pengaruh variable makroekonomi terhadap tingkat inflasi di asean-5, periode 2000-2014 : Analisis panel data
,
Jurnal Ekonomi dan bisnis usakti
,
24
,
8
10
(
2016
).
22.
A.
Zellner
,
An Efficient Method of Estimating Seemingly Unrelated Regression and test for Aggregation Bias
.
Journal of The American Statistical Association
,
57
,
346
368
(
1962
).
This content is only available via PDF.
You do not currently have access to this content.