K-Nearest Neighbor or also known as KNN is one of classification method in data mining. KNN is used to classify data with label or supervised data. The KNN algorithm classifies unlabeled test samples based on the majority of similar samples among the closest neighbors to the test sample. KNN algorithm requires distance metrics to classify, there are lots of distance metrics. Continuely, Euclidean distance is often used in clustering or classification, in this research comparatively use Covid-19 symptoms dataset then we compare KNN with Euclidean distance to KNN with other distances i.e., Manhattan, Chebyshev, Bray-Curtis, Canberra, and Cosine use the classification’s accuracy, precision, sensitivity/recall, F-1 score and time to see wich one is better for the dataset. This research produce the accuracy, precision, recall rate and F-1 Score respectively are same with value is 0.98 for Euclidean, Manhattan. The time generated by Chebyshev is faster than other distances with the computation time is 36.4 seconds.

1.
M. J. a.
Berry
and
G. S.
Linoff
,
Data mining techniques: for marketing, sales, and customer relationship management
(
John Wiley & Sons
,
Canada
,
2004
).
2.
M.
Bramer
,
Principles of Data Mining
(
Springer-Verlag
,
London
,
2007
).
3.
D. T.
Larose
,
Data Mining Methods and Models
(
John Wiley & Sons
,
New Jersey
,
2006
).
4.
S. R.
Price
,
S. R.
Price
, and
D. T.
Anderson
, Introducing Fuzzy Layers for Deep Learning,
IEEE International Conference on Fuzzy Systems
(
New Orleans
,
LA
,
2019
).
5.
N.
Bhatia
and
Vandana
, “
Survey of Nearest Neighbor Techniques
,”
Int. Jour. of Comp. Sci. and Inf. Sec.
,
8
,
302
305
, (
2010
).
6.
R.
Ehsani
and
F.
Drabløs
, “
Robust Distance Measures for kNN Classification of Cancer Data
,”
Cancer Inform.
,
19
,
1
9
, (
2020
).
7.
J.
Xu
,
Y.
Zhang
, and
D.
Miao
, “
Three-way confusion matrix for classification: A measure driven view
,”
Inf. Sci. (Ny).
,
507
,
772
794
, (
2020
).
8.
M. H.
Gul
,
Z. M.
Htun
, and
A.
Inayat
, “
Role of fever and ambient temperature in COVID-19
,”
Expert Review of Respiratory Medicine
,
15
,
171
173
, (
2021
).
9.
K.
Chomboon
,
P.
Chujai
,
P.
Teerarassammee
,
K.
Kerdprasop
, and
N.
Kerdprasop
, An Empirical Study of Distance Metrics for k-Nearest Neighbor Algorithm,
Proceedings of the 3rd Int. Conf. on Industrial Application Engineering
(
Kitakyushu
,
JP
,
2015
).
10.
H. A. Abu
Alfeilat
et al., “
Effects of Distance Measure Choice on K-Nearest Neighbor Classifier Performance: A Review
,”
Big Data
,
7
,
221
248
, (
2019
).
11.
P.
Mulak
and
N.
Talhar
, “
Analysis of Distance Measures Using K-Nearest Neighbor Algorithm on KDD Dataset
,”
Int. J. Sci. Res.
,
4
,
2101
2105
(
2013
).
12.
G. M.
Wojcik
and
M.
Wazny
, “
Bray-curtis metrics as measure of liquid state machine separation ability in function of connections density
,”
Procedia Computer Science
,
51
,
2979
2983
(
2015
).
13.
M. D.
Malkauthekar
, Analysis of Euclidean distance and Manhattan distance measure in face recognition,
IET Conference Publications
, (
Mumbay
,
IND
,
2013
)..
14.
O.
Rodrigues
, “
Combining Minkowski and Cheyshev: New distance proposal and survey of distance metrics using k-nearest neighbours classifier
,”
Pattern Recognit. Lett.
,
110
,
66
71
(
2018
).
15.
S. M.
Emran
and
N.
Ye
, Robustness of Canberra Metric in Computer Intrusion Detection,
Proceeding IEEE Work. Inf. Assur. Secur.
(
West Point
,
NY
,
2001
).
16.
See supplementary material
at https://www.kaggle.com/ (accessed at December 24th 2021)
17.
E. D.
Wahyuni
,
A. A.
Arifiyanti
, and
M.
Kustyani
, Exploratory Data Analysis dalam Konteks Klasifikasi Data Mining,
Pros. Nas. Rekayasa Teknol. Ind. dan Inf. XIV
(
Yogyakarta
,
IDN
,
2019
).
18.
E.
Bisong
,
Building Machine Learning and Deep Learning Models on Google Cloud Platform,
(
Apress
,
2019
.
19.
T.
Jayalakshmi
and
A.
Santhakumaran
,
Statistical Normalization and Back Propagationfor Classification
,
Int. J. Comput. Theory Eng.
,
3
,
1793
8201
(
2011
).
20.
A.
Tripathy
,
A.
Agrawal
, and
S. K.
Rath
,
Classification of sentiment reviews using n-gram machine learning approach
,
Expert Syst. Appl.
,
57
,
117
126
(
2016
).
21.
M.
Sokolova
,
N.
Japkowicz
, and
S.
Szpakowicz
, Beyond accuracy, F-score and ROC: A family of discriminant measures for performance evaluation,
AAAI Workshop - Technical Report
, (
Hobart
,
AUS
,
2006
).
This content is only available via PDF.
You do not currently have access to this content.