Patients with this malignancy have a few decades less time left in their lives. If a brain tumour is discovered too late, the patient may go into a coma or become comatose and die. It is essential to identify at an early stage and segment brain tumour regions in MRI In order to perform clinical assessments such as, diagnosis, tumour detection treatment planning, and evaluation,. For segmenting brain tumours in MRI images, a better encoder-decoder convolutional neural network (CNN) architecture is proposed in this paper. Three encoding processing blocks are initially used to extract the hierarchy of tumor tissues characteristics from each input slice. Then, in the following three decoder blocks, these features are enhanced to obtain the original image size. Finally, the extracted features are classified using softmax classification. Concatenated feature maps are used in the decoding stages of this encoder-decoder CNN-based segmentation method, which calls for more processing power. For the BRATS-2018 dataset this technique obtains 91%, 93%, and 94% of dice score values.

1.
Bauer
,
S.
,
Roland
,
W.
,
Lutz-P
,
N.
, and
Mauricio
,
R.
(
2013
).
A survey of MRI-based medical image analysis for brain tumor studies
.
Physics in Medicine and Biology
,
58
:
R97
R129
. DOI:.
2.
Pereira
,
S.
,
Adriano
,
P.
,
Victor
,
A.
, and
Carlos
,
A. S.
(
2016
).
Brain tumor segmentation using convolutional neural networks in MRI images
.
IEEE TRANSACTIONS ON MEDICAL IMAGING
,
35
:
1240
1251
.
3.
Javaria
,
A.
,
Muhammad
,
S.
,
Nadia
,
G.
,
Mussarat
,
Y.
, and
Shafqat
,
A. S.
(
2020
).
Brain tumor classification based on DWT fusion of MRI sequences using convolutional neural network
.
Pattern Recognition Letters
,
127
:
115
122
.
4.
Subashini
,
T. S.
,
G. N.
Balaji
, and
S.
Akila
. “
Brain tissue segmentation in MRI images using GMM
.”
Int. J. Appl. Eng. Res
10
(
2015
):
102
107
.
5.
Jasmine
,
M
, J. and
Thirumurugan
,
P.
(
2018
).
Computer aided automated detection and classification of brain tumors using CANFIS classification method
.
International Journal of Imaging Systems and Technology
,
22318
:
1
8
.
6.
Osisanwo
,
F. Y.
and
Akinsola
,
J. E. T.
(
2017
).
Supervised machine learning algorithms: Classification and comparison
.
International Journal of Computer Trends and Technology (IJCTT)
,
48
.
7.
Anitha
,
V.
and
Pallikonda
,
R.
(
2017
).
An automated hybrid approach using clustering and nature inspired optimization technique for improved tumor and tissue segmentation in magnetic resonance brain images
.
Applied Soft Computing
,
57
:
399
426
. .
8.
Pallavi
,
T.
and
Jenitor
,
T.
(
2016
).
Comparative study of segmentation techniques for brain tumor detection
.
International Journal of Engineering Research and Technology (IJERT)
,
5
:
269
271
.
9.
Khalid
,
U.
and
Kashif
,
R.
(
2017
).
Brain tumor classification from multi-modality MRI using wavelets and machine learning
.
Pattern Analysis and Applications
,
20
:
871
881
. DOI .
10.
Menze
,
B.
,
Jakab
,
A.
,
Bauer
,
S.
, and C., J. K. (
2015
).
The multimodal brain tumor image segmentation benchmark (BRATS
).
IEEE TRANSACTIONS ON MEDICAL IMAGING
,
34
(
10
):
1193
2024
.
11.
Raviv
,
T. R.
,
Leemput
,
K. V.
, and
Menze
,
B. H.
(
2012
).
Multi-modal brain tumor segmentation via latent atlases
. In
NCI-MICCAI BRATS
2012, pages
64
73
.
12.
Sahar
,
Y.
,
Reza
,
A.
, and
Morteza
,
Z.
(
2010
).
Brain tumor segmentation in 3D MRIs using an improved markov random field model
. In
2010 International Conference on Signal and Information Processing (ICSIP 2010
), pages
382
386
. 978-1-4244-9103-2/10/26.00 C 2010
IEEE
.
13.
Festa
,
J.
,
Pereira
,
S.
,
Mariz
,
J. A.
,
Nuno
,
S.
, and
Silva
,
C. A.
(
2013
).
Automatic brain tumor segmentation of multi-sequence MR images using random decision forests
. In
NCI-MICCAI BRATS 2013
, pages
23
26
.
14.
Meier
,
R.
,
Stefan
,
B.
,
Johannes
,
S.
,
Roland
,
W.
, and
Mauricio
,
R.
(
2013
).
A hybrid model for multimodal brain tumor segmentation
. In
NCI-MICCAI BRATS 2013
, pages
31
37
.
15.
(
2012
).
BRATS 2012 dataset
. https://www.smir.ch/BRATS/Start2012.
16.
Khalid
,
U.
and
Kashif
,
R.
(
2017
).
Brain tumor classification from multi-modality MRI using wavelets and machine learning
.
Pattern Analysis and Applications
,
20
:
871
881
. DOI .
17.
Jasmine
,
M
, J. and
Thirumurugan
,
P.
(
2018
).
Computer aided automated detection and classification of brain tumors using CANFIS classification method
.
International Journal of Imaging Systems and Technology
,
22318
:
1
8
.
18.
Javaria
,
A.
,
Muhammad
,
S.
,
Nadia
,
G.
,
Mussarat
,
Y.
, and
Shafqat
,
A. S.
(
2020
).
Brain tumor classification based on DWT fusion of MRI sequences using convolutional neural network
.
Pattern Recognition Letters
,
127
:
115
122
.
19.
Pawel
,
M.
,
Herve
,
D.
,
Antonio
,
C.
, and
Nicholas
,
A.
(
2019
).
Deep learning ´ with mixed supervision for brain tumor segmentation
.
Journal of Medical Imaging
,
6
:
1
14
.
20.
Pereira
,
S.
,
Adriano
,
P.
,
Victor
,
A.
, and
Carlos
,
A. S.
(
2016
).
Brain tumor segmentation using convolutional neural networks in MRI images
.
IEEE TRANSACTIONS ON MEDICAL IMAGING
,
35
:
1240
1251
.
21.
Havaei
,
M.
and
Davy
,
A.
(
2017
).
Brain tumor segmentation with deep neural network
.
Medical Image Analysis
,
35
:
18
31
. .
22.
Dong
,
H.
,
Guang
,
Y.
,
Fangde
,
L.
,
Yuanhan
,
M.
, and
Yike
,
G.
(
2017
).
Automatic brain tumor detection and segmentation using U-Net based fully convolutional networks
. In
MIUA2017
, pages
1
12
.
This content is only available via PDF.
You do not currently have access to this content.