This project aims to detect online payment fraud using machine learning algorithms. Fraud is an illegal criminal activity carried out for monetary or personal gain. Detection of such fraud requires a dataset comprising details about past fraudulent transactions for training, testing, and pattern detection to anticipate any fraud. For this task, authors are using a dataset from Kaggle and have been implementing four algorithms viz. logistic regression, decision trees, random forests, and k-nearest neighbor. However, the data must be cleaned and pre-formatted before training and testing. Therefore, authors perform data pre-processing which removes attributes that do not help to identify fraudulent transactions, handle missing data and outliers, match or encode categorical data, and more. This allows the implementation of a training model to predict fraudulent or non-fraudulent transactions. Finally, the accuracy of all four models is compared and it is noticed that all 4 models are performing quite well for fraud detection.

1.
S.
Satpathy
,
M.
Mangla
,
N.
Sharma
,
H.
Deshmukh
, and
S.
Mohanty
,
Spat. Info. Rese
.
29
(
4
),
455
464
(
Singapore
,
2021
).
2.
M.
Mangla
,
N.
Sharma
and
P.
Mittal
,
Turk. J. Elec. Engi. and Comp. Sci
.
29
(
3
),
1628
1642
(
Gebze
,
Turkiye
,
2021
).
3.
R.
Sharma
,
N.
Sharma
and
M.
Mangla
in
proceedings of 2nd International Conference on Secure Cyber Computing and Communications
(
Jalandhar, India
,
2021
), pp.
443
449
.
4.
Statista Research Department
, (
2022
), available at https://www.statista.com/statistics/1012762/india-value-of-bank-fraud/
5.
M.
Mangla
,
S. K.
Shinde
,
V.
Mehta
,
N.
Sharma
and
S. N.
Mohanty
,
Handbook of Research on Machine Learning: Foundations and Applications
(
CRC
,
Boca Raton, FL
,
2022
).
6.
K. R.
Kalyani
, and
D. Uma
Devi
,
Int. J. Sci. and Engi. Rese
.
3
(
7
),
1
6
(
Nagpur
,
India
,
2012
).
7.
S. H.
Li
,
D. C.
Yen
,
W. H.
Lu
and
C.
Wang
,
Comp. in Huma. Beha
.
28
(
3
),
1002
1013
, (
Amsterdam
,
Netherlands
,
2012
).
8.
W.
Xu
and
Y.
Liu
, ”An Optimized SVM Model for Detection of Fraudulent Online Credit Card Transactions” in
Proceedings of 2012 International Conference on Management of e-Commerce and e-Government
(
Beijing, China
,
2012
), pp.
14
17
.
9.
D.
Abdelhamid
,
S.
Khaoula
, and
O.
Atika
, “Automatic bank fraud detection using support vector machines” in
Proceedings of the International Conference on Computing Technology and Information Management
(
Dubai, UAE
,
2014
), pp.
10
.
10.
Y.
Sahin
,
S.
Bulkan
and
E.
Duman
,
Expe. Syst. with Appl
.
40
(
15
),
5916
5923
(
Amsterdam
,
Netherlands
,
2013
).
11.
M.
Vadoodparast
and
A. R.
Hamdan
,
Int. J. Comp. Sci. and Info. Secu
.
13
(
3
),
90
(
Pittsburgh
,
USA
,
2015
).
12.
A.
Oluwafolake
and
O. A.
Solomon
,
Afri. J. Math. and Comp. Sci. Rese
.
10
(
1
),
5
13
(
Nigeria
,
2017
).
13.
P. K.
Sadineni
, “Detection of Fraudulent Transactions in Credit Card using Machine Learning Algorithms” in
Proceedings of 4th International Conference on I-SMAC
(
Palladam, India
,
2020
), pp.
659
663
.
14.
F.
Baratzadeh
and
S. M. H.
Hasheminejad
,
J. AI and Data Mini
.
10
(
1
),
87
101
(
Semnan Province
,
Iran
,
2020
).
15.
P.
Gamini
,
S. T.
Yerramsetti
,
G. D.
Darapu
,
V. K.
Pentakoti
and
V. P.
Raju
,
J. Emer. Tech. and Inno. Rese
. (
JETIR
)
8
(
2
),
2031
-
2036
(
Ahmedabad, India
,
2021
).
This content is only available via PDF.
You do not currently have access to this content.