Alzheimer disease in its early stages, often known as a kind of dementia, is one of the major causes of death worldwide. It is a neurodegenerative illness in which brain electrical activity called electroencephalograph (EEG) slows down relative to that of healthy people. In the literature, a number of biomarkers are explored for detecting these EEG irregularities in signal. The EEG signals that record brain’s small electrical signal activity are highlighted in the current scientific study. EEG signals are utilized to diagnose Alzheimer disease based on relative power features. The wavelet transform is used for the denoising the EEG signal to increase the superiority of the signals. Multilayer perceptron and convolutional neural network were incorporated to learn the various features based on power for different stages of Alzheimer disease and normal people and achieved better results were compared to those found in the literature. The presented methodology gives the 96.72% accuracy on the real time database which is used in the study. As a result, the use of deep learning algorithms in clinical evaluation gives a baseline for investigation numerous neurological illnesses such as epilepsy, brain tumors, Alzheimer’s disease, and many other.

1.
S. L.
Murphy
,
J.
Xu
, and
K. D.
Kochanek
,
Natl. Vital Stat. Reports
61
,
1
117
(
2013
).
2.
Alzheimer Association
,
Early Signs and Symptoms of Alzheimer’s Alzheimer
, (
2019
).
3.
M. P.
Mattson
,
Natu.
430
,
631
639
(
2004
).
4.
Alzheimer’s Association
,
2009
, “
Facts and Figures
” available at https://www.alz.org/national/documents/report_alzfactsfigures2009.pdf.
5.
B.
Duthey
,
Alzh. Dis.
,
6
, 11-1-6.11-74, (
2013
).
6.
Elgandelwar
,
S.M.
and
Bairagi
,
V.K.
,
Int. J. Medi. Engg. and Infor.
13
,
376
385
(
2011
).
7.
D.
Puri
,
S.
Nalbalwar
,
A.
Nandgaonkar
, and
A.
Wagh
,
Appl. Info. Proce. Syst.
1354
,
157
165
(
2022
).
8.
D.
Pirrone
,
E.
Weitschek
,
P.
Di Paolo
, and
S.
De Salvo
,
Appl. Scie.
12
,
5413
(
2022
).
9.
M.
Amini
,
M. M.
Pedram
,
A. R.
Moradi
, and
M.
Ouchani
,
Comput. Math. Methods Med
115
121
, (
2021
).
10.
M.
Ouchani
,
S.
Gharibzadeh
,
M.
Jamshidi
, and
M.
Amini
,
Biomed Res. Int.
2021
, (
2021
).
11.
S.
Nobukawa
,
T.
Yamanishi
,
S.
Kasakawa
,
H.
Nishimura
,
M.
Kikuchi
, and
T.
Takahashi
,
Front. Psyc.
11
,
1
12
, (
2020
).
12.
M.
Ismail
,
K.
Hofmann
,
M. A.
Abd
, and
E.
Ghany
, “
Early Diagnoses of Alzheimer using EEG data and Deep Neural Networks classification
,” in
Proceedings of the 2019 IEEE Global Conference on Internet of Things (GCIoT)
(
2019
).
13.
S.
Simons
,
P.
Espino
, and
D.
Abásolo
,
Entro.
20
,
1
13
, (
2018
).
14.
P.
Goli
,
E. M.
Rad
,
K.
Ghandehari
, and
M.
Azarnoosh
,
Machi. Lear. Rese.
2
,
148
151
, (
2017
).
15.
A.
Rakshit
,
A.
Banerjee
,
A.
Mazumder
,
P.
Ghosh
,
A.
Dey
, and
D. N.
Tibarewala
,
Int. J. Biom. Engg. Tech.
5
,
336
369
, (
2017
).
16.
S.
Nazari
,
M.
Ataei
, and
A.
Tamizi
,
Int. J. Biomed. Eng. Technol.
22
,
349
369
(
2016
).
17.
L.
Mosconi
,
V.
Berti
,
L.
Glodzik
,
A.
Pupi
,
S.
De Santi
, and
M. J.
De Leon
,
J. Alzh. Dise.
20
,
843
854
(
2010
).
18.
U.
Song
,
Y. A.
Chung
,
S. W.
Chung
, and
J.
Jeong
,
Dement. Geriatr. Cogn. Disord.
,
37
,
276
285
(
2014
).
19.
R.
Cassani
,
T. H.
Falk
,
F. J.
Fraga
,
P. A.
Kanda
, and
R.
Anghinah
, “
Towards automated EEG-Based Alzheimer’s disease diagnosis using relevance vector machines
,” in
Proceedings of the ISSNIP Biosignals Biorobotics Conf. BRC
(
2014
), pp.
261
271
.
20.
G.
Jacques
,
J.
Frymiare
,
J.
Kounios
,
C.
Clark
and
R.
Polikar
, “
Multiresolution wavelet analysis and ensemble of classifiers for early diagnosis of Alzheimer’s disease
,” in
Proceedings of the 30th IEEE Int. Conf. on Acoustics, Speech and Signal Proc
(
ICASSP
2005
), (2005), pp.
389
392
.
21.
Maan M.
Shaker
,
World Academy of Science, Engineering and Technology
3
(
2007
).
22.
L.
Zhenbing
,
L.
Haoxiang L.
,
P.
Xipeng
,
X.
Mingchang
,
R.
Lan
and
X.
Luo
,
Knowledge-Based Systems
,
238
(
2022
).
23.
A.
Morteza
,
M.P.
Mir
,
M.
AliReza
and
O.
Mahshad
,
Comp.and math. Meth. in Medi.
(
2021
)
24.
E. A.
Rad
,
G.
Mahdi
, and
M.
Khalilzadeh
,
Biom. Sign. Proce. and Cont.
135
, (
2021
)
25.
Emotiv
, “
The most credible and cost-effective mobile EEG Brain wear device in the market
”,
2022
, available at https://www.emotiv.com/epoc/.
26.
S. M.
Elgandelwar
, and
V. K.
Bairagi
,
Int. J. Inno. Techn. and Explo. Engg.
8
,
3675
3679
(
2019
).
27.
S. M.
Elgandelwar
, and
V. K.
Bairagi
,
Int. J. Sci. and Engg. And Rese.
7
,
529
532
(
2016
).
This content is only available via PDF.
You do not currently have access to this content.