In the present research work, the slump, compressive strength, flexural strength, split tensile strength, modulus of elasticity, ultrasonic pulse velocity, density and water absorption of Ultra High Performance Concrete (UHPC) with different percentage of nano ZrO2 particles has been investigated. The cement was replaced by nano ZrO2 particles at 1 %, 2 %, 3 %, 4 % and 5 % by weight. Results of this research work clearly show that 3% nano ZrO2 was optimum. It reduces the workability and the mechanical performance of UHPC due to its smaller size, higher Specific surface area and high pozzolanic reactivity of nanoZrO2 particles.
REFERENCES
1.
D.
Feng
, N.
Xie
, C.
Gong
, Z.
Leng
, H.
Xiao
, H.
Li
, X.
Shi
, Portland Cement Paste Modi fi ed by TiO2 Nanoparticles : A Microstructure Perspective
, Ind. Eng. Chem. Res.
52
(2013
) 11575
–11582
.2.
M.
Sharbaf
, T.
Davoudzadeh
, M.R.
Eftekhar
, M.
Kamali
, An Investigation on the Effects of Al2O3 Nano-particles on Durability and Mechanical Properties of High Performance Concrete
, in: Fourth Int. Conf. Concr. Dev.
April 29 -May 1 2013, Tehran, Iran., 2013
: pp. 1
–11
. .3.
H.I.
Ahmed
, Behavior of magnetic concrete incorporated with Egyptian nano alumina
, Constr. Build. Mater.
150
(2017
) 404
–408
. .4.
J.
Xiao
, H.
Schneider
, F.
Dehn
, G.
König
, Test on Fracture Behaviour of Ultra High-Strength Concrete
, Role Concr. Sustain. Dev.
(2015
) 369
–378
. .5.
Y.L.
Voo
, S.J.
Foster
, Characteristics of ultra-high performance “ductile” concrete and its impact on sustainable construction
, IES J. Part A Civ. Struct. Eng.
3
(2010
) 168
–187
. .6.
S.
Ahmad
, I.
Hakeem
, M.
Maslehuddin
, Development of UHPC mixtures utilizing natural and industrial waste materials as partial replacements of silica fume and sand
, Sci. World J.
2014
(2014
). .7.
T.
Oertel
, F.
Hutter
, R.
Tänzer
, U.
Helbig
, G.
Sextl
, Primary particle size and agglomerate size effects of amorphous silica in ultra-high performance concrete
, Cem. Concr. Compos.
37
(2013
) 61
–67
. .8.
W.
Zheng
, H.
Li
, Y.
Wang
, Compressive behaviour of hybrid fiber-reinforced reactive powder concrete after high temperature
, Mater. Des.
41
(2012
) 403
–409
. .9.
G.
Long
, X.
Wang
, Y.
Xie
, Very-high-performance concrete with ultrafine powders
, Cem. Concr. Res.
32
(2002
) 601
–605
. .10.
H.
So
, H.
Jang
, J.
Khulgadai
, S.
So
, Mechanical properties and microstructure of reactive powder concrete using ternary pozzolanic materials at elevated temperature
, KSCE J. Civ. Eng.
19
(2015
) 1050
–1057
. .11.
A.
Arora
, M.
Aguayo
, H.
Hansen
, C.
Castro
, E.
Federspiel
, B.
Mobasher
, N.
Neithalath
, Microstructural packing- and rheology-based binder selection and characterization for Ultra-high Performance Concrete (UHPC
), Cem. Concr. Res.
103
(2018
) 179
–190
. .12.
N.
Van Tuan
, G.
Ye
, K.
Van Breugel
, O.
Copuroglu
, Hydration and microstructure of ultra high performance concrete incorporating rice husk ash
, Cem. Concr. Res.
41
(2011
) 1104
–1111
. .13.
K.
Aarthi
, K.
Arunachalam
, Durability Studies on Fibre Reinforced Self Compacting
, J. Clean. Prod.
(2017
). .14.
M.
Canbaz
, The effect of high temperature on reactive powder concrete
, Constr. Build. Mater.
70
(2014
) 508
–513
. .15.
K.V.
Harish
, J.K.
Dattatreya
, M.
Neelamegam
, Experimental investigation and analytical modeling of the σ-ε Characteristics in compression of heat-treated ultra-high strength mortars produced from conventional materials
, Constr. Build. Mater.
49
(2013
) 781
–796
. .16.
V.
Vaitkevičius
, E.
Šerelis
, H.
Hilbig
, The effect of glass powder on the microstructure of ultra high performance concrete
, Constr. Build. Mater.
68
(2014
) 102
–109
. .17.
L.P.
Singh
, S.R.
Karade
, S.K.
Bhattacharyya
, M.M.
Yousuf
, S.
Ahalawat
, Beneficial role of nanosilica in cement based materials – A review
, Constr. Build. Mater.
47
(2013
) 1069
–1077
. .18.
M.M.
Kaykha
, F.
Soleymani
, Assessments of the effects of ZrO2 nanopowders on porosimetry and mechanical properties of concrete
, J. Am. Sci.
8
(2012
) 29
–35
.19.
M.M.
Khotbehsara
, B.M.
Miyandehi
, F.
Naseri
, T.
Ozbakkaloglu
, F.
Jafari
, E.
Mohseni
, Effect of SnO2, ZrO2, and CaCO3 nanoparticles on water transport and durability properties of self-compacting mortar containing fly ash : Experimental observations and ANFIS predictions
, Constr. Build. Mater.
158
(2018
) 823
–834
. .20.
Q.
Li
, A.D.
Deacon
, N.J.
Coleman
, The impact of zirconium oxide nanoparticles on the hydration chemistry and biocompatibility of white Portland cement
, Dent. Mater. J.
32
(2013
) 808
–815
. .21.
A.
Nazari
, S.
Riahi
, Limewater effects on properties of ZrO2 nanoparticle blended cementitious composite
, J. Compos. Mater.
45
(2010
) 639
–644
. .22.
A.
Nazari
, S.
Riahi
, ZrO2 Nanoparticles’ Effects on Split Tensile Strength of Self Compacting Concrete
, Mater. Res.
13
(2010
) 485
–495
.23.
A.
Nazari
, S.
Riahi
, The Effects of ZrO2 Nanoparticles on Physical and Mechanical Properties of High Strength Self Compacting Concrete
, Mater. Res.
13
(2010
) 551
–556
.24.
A.
Nazari
, S.
Riahi
, Physical and mechanical behavior of high strength self-compacting concrete containing ZrO2 nanoparticles
, Int. J. Mater. Res. (Formerly Z. Met.
102
(2011
) 560
–571
.25.
A.
Nazari
, S.
Riahi
, The effects of ZrO2 nanoparticles on properties of concrete using ground granulated blast furnace slag as binder
, J. Compos. Mater.
46
(2011
) 1079
–1090
. .26.
A.
Nazari
, S.
Riahi
, Computer-aided Prediction of the ZrO2 Nanoparticles Effects on Tensile Strength and Percentage of Water Absorption of Concrete Specimens
, J. Mater. Sci. Technol.
28
(2012
) 83
–96
. .27.
A.
Nazari
, S.
Riahi
, The effects of ZrO2 nanoparticles on strength assessments and water permeability of concrete in different curing media
, J. Exp. Nanosci.
8
(2013
) 413
–433
. .28.
A.
Nazari
, S.
Riahi
, S.
Riahi
, S.F.
Shamekhi
, A.
Khademno
, An investigation on the Strength and workability of cement based concrete performance by using ZrO2 nanoparticles
, J. Am. Sci.
6
(2010
) 29
–33
.29.
A.
Nazari
, S.
Riahi
, S.
Riahi
, S.F.
Shamekhi
, A.
Khademno
, Embedded ZrO2 nanoparticles mechanical properties monitoring in cementitious composites
, J. Am. Sci.
6
(2010
) 86
–89
.30.
M.H.
Rafieipour
, A.
Nazari
, M.A.
Mohandesi
, G.
Khalaj
, Improvement Compressive Strength of Cementitious Composites in Different Curing Media by Incorporating ZrO2 Nanoparticles
, Mater. Res.
(2011
) 1
–8
.31.
A.H.
Shekari
, M.S.
Razzaghi
, Influence of nano particles on durability and mechanical properties of high performance concrete
, Procedia Eng.
14
(2011
) 3036
–3041
. .32.
F.
Soleymani
, Pore structure and flexural strength of ZrO2 nanopowders palm oil clinker aggregate-based binary blended concrete
, J. Am. Sci.
8
(2012
) 187
–194
.33.
F.
Soleymani
, The effects of ZrO2 nanopowders on compressive damage and pore structure properties of concrete specimens
, J. Am. Sci.
8
(2012
) 738
–744
.34.
IS-12269:2013, Ordinary Portland Cement
, 53 Grade-Specification
, (n.d.).35.
IS 2386(Part-III):1963
, Methods of test for aggregates for concrete
, Part 3: Specific gravity, density, voids, absorption and bulking
, (n.d.).36.
IS 15388:2003
, Specification for Silica Fume
, (n.d.).37.
S.
Kawashima
, J.-W.T.
Seo
, D.
Corr
, M.C.
Hersam
, S.P.
Shah
, Dispersion of CaCO 3 nanoparticles by sonication and surfactant treatment for application in fly ash – cement systems
, Mater. Struct.
47
(2014
) 1011
–1023
. .
This content is only available via PDF.
©2023 Authors. Published by AIP Publishing.
2023
Author(s)
You do not currently have access to this content.