In the present research work, the slump, compressive strength, flexural strength, split tensile strength, modulus of elasticity, ultrasonic pulse velocity, density and water absorption of Ultra High Performance Concrete (UHPC) with different percentage of nano ZrO2 particles has been investigated. The cement was replaced by nano ZrO2 particles at 1 %, 2 %, 3 %, 4 % and 5 % by weight. Results of this research work clearly show that 3% nano ZrO2 was optimum. It reduces the workability and the mechanical performance of UHPC due to its smaller size, higher Specific surface area and high pozzolanic reactivity of nanoZrO2 particles.

1.
D.
Feng
,
N.
Xie
,
C.
Gong
,
Z.
Leng
,
H.
Xiao
,
H.
Li
,
X.
Shi
,
Portland Cement Paste Modi fi ed by TiO2 Nanoparticles : A Microstructure Perspective
,
Ind. Eng. Chem. Res.
52
(
2013
)
11575
11582
.
2.
M.
Sharbaf
,
T.
Davoudzadeh
,
M.R.
Eftekhar
,
M.
Kamali
,
An Investigation on the Effects of Al2O3 Nano-particles on Durability and Mechanical Properties of High Performance Concrete
, in:
Fourth Int. Conf. Concr. Dev.
April 29 -May 1 2013, Tehran, Iran.,
2013
: pp.
1
11
. .
3.
H.I.
Ahmed
,
Behavior of magnetic concrete incorporated with Egyptian nano alumina
,
Constr. Build. Mater.
150
(
2017
)
404
408
. .
4.
J.
Xiao
,
H.
Schneider
,
F.
Dehn
,
G.
König
,
Test on Fracture Behaviour of Ultra High-Strength Concrete
,
Role Concr. Sustain. Dev.
(
2015
)
369
378
. .
5.
Y.L.
Voo
,
S.J.
Foster
,
Characteristics of ultra-high performance “ductile” concrete and its impact on sustainable construction
,
IES J. Part A Civ. Struct. Eng.
3
(
2010
)
168
187
. .
6.
S.
Ahmad
,
I.
Hakeem
,
M.
Maslehuddin
,
Development of UHPC mixtures utilizing natural and industrial waste materials as partial replacements of silica fume and sand
,
Sci. World J.
2014
(
2014
). .
7.
T.
Oertel
,
F.
Hutter
,
R.
Tänzer
,
U.
Helbig
,
G.
Sextl
,
Primary particle size and agglomerate size effects of amorphous silica in ultra-high performance concrete
,
Cem. Concr. Compos.
37
(
2013
)
61
67
. .
8.
W.
Zheng
,
H.
Li
,
Y.
Wang
,
Compressive behaviour of hybrid fiber-reinforced reactive powder concrete after high temperature
,
Mater. Des.
41
(
2012
)
403
409
. .
9.
G.
Long
,
X.
Wang
,
Y.
Xie
,
Very-high-performance concrete with ultrafine powders
,
Cem. Concr. Res.
32
(
2002
)
601
605
. .
10.
H.
So
,
H.
Jang
,
J.
Khulgadai
,
S.
So
,
Mechanical properties and microstructure of reactive powder concrete using ternary pozzolanic materials at elevated temperature
,
KSCE J. Civ. Eng.
19
(
2015
)
1050
1057
. .
11.
A.
Arora
,
M.
Aguayo
,
H.
Hansen
,
C.
Castro
,
E.
Federspiel
,
B.
Mobasher
,
N.
Neithalath
,
Microstructural packing- and rheology-based binder selection and characterization for Ultra-high Performance Concrete (UHPC
),
Cem. Concr. Res.
103
(
2018
)
179
190
. .
12.
N.
Van Tuan
,
G.
Ye
,
K.
Van Breugel
,
O.
Copuroglu
,
Hydration and microstructure of ultra high performance concrete incorporating rice husk ash
,
Cem. Concr. Res.
41
(
2011
)
1104
1111
. .
13.
K.
Aarthi
,
K.
Arunachalam
,
Durability Studies on Fibre Reinforced Self Compacting
,
J. Clean. Prod.
(
2017
). .
14.
M.
Canbaz
,
The effect of high temperature on reactive powder concrete
,
Constr. Build. Mater.
70
(
2014
)
508
513
. .
15.
K.V.
Harish
,
J.K.
Dattatreya
,
M.
Neelamegam
,
Experimental investigation and analytical modeling of the σ-ε Characteristics in compression of heat-treated ultra-high strength mortars produced from conventional materials
,
Constr. Build. Mater.
49
(
2013
)
781
796
. .
16.
V.
Vaitkevičius
,
E.
Šerelis
,
H.
Hilbig
,
The effect of glass powder on the microstructure of ultra high performance concrete
,
Constr. Build. Mater.
68
(
2014
)
102
109
. .
17.
L.P.
Singh
,
S.R.
Karade
,
S.K.
Bhattacharyya
,
M.M.
Yousuf
,
S.
Ahalawat
,
Beneficial role of nanosilica in cement based materials – A review
,
Constr. Build. Mater.
47
(
2013
)
1069
1077
. .
18.
M.M.
Kaykha
,
F.
Soleymani
,
Assessments of the effects of ZrO2 nanopowders on porosimetry and mechanical properties of concrete
,
J. Am. Sci.
8
(
2012
)
29
35
.
19.
M.M.
Khotbehsara
,
B.M.
Miyandehi
,
F.
Naseri
,
T.
Ozbakkaloglu
,
F.
Jafari
,
E.
Mohseni
,
Effect of SnO2, ZrO2, and CaCO3 nanoparticles on water transport and durability properties of self-compacting mortar containing fly ash : Experimental observations and ANFIS predictions
,
Constr. Build. Mater.
158
(
2018
)
823
834
. .
20.
Q.
Li
,
A.D.
Deacon
,
N.J.
Coleman
,
The impact of zirconium oxide nanoparticles on the hydration chemistry and biocompatibility of white Portland cement
,
Dent. Mater. J.
32
(
2013
)
808
815
. .
21.
A.
Nazari
,
S.
Riahi
,
Limewater effects on properties of ZrO2 nanoparticle blended cementitious composite
,
J. Compos. Mater.
45
(
2010
)
639
644
. .
22.
A.
Nazari
,
S.
Riahi
,
ZrO2 Nanoparticles’ Effects on Split Tensile Strength of Self Compacting Concrete
,
Mater. Res.
13
(
2010
)
485
495
.
23.
A.
Nazari
,
S.
Riahi
,
The Effects of ZrO2 Nanoparticles on Physical and Mechanical Properties of High Strength Self Compacting Concrete
,
Mater. Res.
13
(
2010
)
551
556
.
24.
A.
Nazari
,
S.
Riahi
,
Physical and mechanical behavior of high strength self-compacting concrete containing ZrO2 nanoparticles
,
Int. J. Mater. Res. (Formerly Z. Met.
102
(
2011
)
560
571
.
25.
A.
Nazari
,
S.
Riahi
,
The effects of ZrO2 nanoparticles on properties of concrete using ground granulated blast furnace slag as binder
,
J. Compos. Mater.
46
(
2011
)
1079
1090
. .
26.
A.
Nazari
,
S.
Riahi
,
Computer-aided Prediction of the ZrO2 Nanoparticles Effects on Tensile Strength and Percentage of Water Absorption of Concrete Specimens
,
J. Mater. Sci. Technol.
28
(
2012
)
83
96
. .
27.
A.
Nazari
,
S.
Riahi
,
The effects of ZrO2 nanoparticles on strength assessments and water permeability of concrete in different curing media
,
J. Exp. Nanosci.
8
(
2013
)
413
433
. .
28.
A.
Nazari
,
S.
Riahi
,
S.
Riahi
,
S.F.
Shamekhi
,
A.
Khademno
,
An investigation on the Strength and workability of cement based concrete performance by using ZrO2 nanoparticles
,
J. Am. Sci.
6
(
2010
)
29
33
.
29.
A.
Nazari
,
S.
Riahi
,
S.
Riahi
,
S.F.
Shamekhi
,
A.
Khademno
,
Embedded ZrO2 nanoparticles mechanical properties monitoring in cementitious composites
,
J. Am. Sci.
6
(
2010
)
86
89
.
30.
M.H.
Rafieipour
,
A.
Nazari
,
M.A.
Mohandesi
,
G.
Khalaj
,
Improvement Compressive Strength of Cementitious Composites in Different Curing Media by Incorporating ZrO2 Nanoparticles
,
Mater. Res.
(
2011
)
1
8
.
31.
A.H.
Shekari
,
M.S.
Razzaghi
,
Influence of nano particles on durability and mechanical properties of high performance concrete
,
Procedia Eng.
14
(
2011
)
3036
3041
. .
32.
F.
Soleymani
,
Pore structure and flexural strength of ZrO2 nanopowders palm oil clinker aggregate-based binary blended concrete
,
J. Am. Sci.
8
(
2012
)
187
194
.
33.
F.
Soleymani
,
The effects of ZrO2 nanopowders on compressive damage and pore structure properties of concrete specimens
,
J. Am. Sci.
8
(
2012
)
738
744
.
34.
IS-12269:2013, Ordinary Portland Cement
,
53 Grade-Specification
, (n.d.).
35.
IS 2386(Part-III):1963
,
Methods of test for aggregates for concrete
,
Part 3: Specific gravity, density, voids, absorption and bulking
, (n.d.).
36.
IS 15388:2003
,
Specification for Silica Fume
, (n.d.).
37.
S.
Kawashima
,
J.-W.T.
Seo
,
D.
Corr
,
M.C.
Hersam
,
S.P.
Shah
,
Dispersion of CaCO 3 nanoparticles by sonication and surfactant treatment for application in fly ash – cement systems
,
Mater. Struct.
47
(
2014
)
1011
1023
. .
This content is only available via PDF.
You do not currently have access to this content.