Autism Spectrum Disorder (ASD) is a complex neurological condition that manifests as a spectrum of symptoms at varying levels of severity. Insufficient data and heterogeneous characteristics of ASD are the primary causes of it being a complex, challenging, and intriguing field of research. ASD is declared one of the fastest-growing mental disorders affecting the normal life of subjects at various levels of severity and stages of age. Recent research work observed a significant change in brain structure, functional connectivity, and network using neuroimaging resources. Each autistic brain is as unique as a fingerprint for typically developed subjects. Magnetic Resonance Imaging (MRI) is accepted as an excellent diagnostic technology for numerous disorders with a satisfactory amount of information by medical experts. Cognitive deficits brain MRI modalities contain microscopic information, which is time-consuming and needs experts to interpret. Artificial intelligence (AI) strategies (Machine Learning and Deep Learning) are implemented with various imaging modalities to decrypt the information for diagnosis and to support computer-added solutions for appropriate treatment. The research aims to discover the various evolutionary impacts of artificial intelligence for the diagnosis of Autism syndrome disorder using neuroimaging. To automate the diagnosis using artificial intelligence methodologies, medical imaging has proved to be of immense use. Though neuroimaging and AI produced satisfactory diagnostic solutions for many mental disorders, research is required to explore the autistic brain for more neuroimaging information to be used for further investigation. Some of the Internet of Things (IoT) solutions for detection and training are also invented but not with the use of Neuroimaging. Autism is a neurological condition that affects the brain, and hence more research is advised using imaging and AI techniques to support the community to enjoy a normal life.

1.
E. A.
DeVilbiss
and
B. K.
Lee
, “
Brief report: trends in us national autism awareness from 2004 to 2014: the impact of national autismawareness month
,”
Journal of autism and developmental disorders
44
,
3271
3273
(
2014
).
2.
M.
Malviya
and
J.
Chandra
, “
A systematic review on prognosis of autism using machine learning techniques
,”
ECS Transactions
107
,
11623
(
2022
).
3.
M. N. A.
Tawhid
,
S.
Siuly
,
H.
Wang
,
F.
Whittaker
,
K.
Wang
, and
Y.
Zhang
, “
A spectrogram image based intelligent technique for automaticdetection of autism spectrum disorder from eeg
,”
Plos one
16
,
e0253094
(
2021
).
4.
M.
Tian
,
X.
He
,
C.
Jin
,
X.
He
,
S.
Wu
,
R.
Zhou
,
X.
Zhang
,
K.
Zhang
,
W.
Gu
,
J.
Wang
, et al, “
Transpathology: molecular imaging-based pathology
,”
European journal of nuclear medicine and molecular imaging
48
,
2338
2350
(
2021
).
5.
P.
Mazumdar
,
G.
Arru
, and
F.
Battisti
, “
Early detection of children with autism spectrum disorder based on visual exploration of images
,”
Signal Processing: Image Communication
94
,
116184
(
2021
).
6.
S.
Lundström
,
M.
Taylor
,
H.
Larsson
,
P.
Lichtenstein
,
R.
Kuja-Halkola
, and
C.
Gillberg
, “
Perceived child impairment and the ‘autism epidemic
’,”
Journal of Child Psychology and Psychiatry
63
,
591
598
(
2022
).
7.
J. D.
Buxbaum
, “
Multiple rare variants in the etiology of autism spectrum disorders
,”
Dialogues in clinical neuroscience
(
2022
).
8.
C.
Fisher
, “
Autistic brains develop more slowly than healthy brains
,”
BMED Report
, October 28 (
2011
).
9.
K. Y.
Lai
,
E. C.
Yuen
,
S. F.
Hung
, and
P. W.
Leung
, “
Autism diagnostic interview-revised within dsm-5 framework: Test of reliability andvalidity in chinese children
,”
Journal of Autism and Developmental Disorders
52
,
1807
1820
(
2022
).
10.
R. K.
Greene
,
I.
Vasile
,
K. R.
Bradbury
,
A.
Olsen
, and
S. W.
Duvall
, “
Autism diagnostic observation schedule (ados-2) elevations in a clinicalsample of children and adolescents who do not have autism: phenotypic profiles of false positives
,”
The Clinical Neuropsychologist
,
1
17
(
2021
).
11.
Y.
Flores-Rodríguez
,
O. R.
Ceballos
, and
L.
Albores-Gallo
, “
Assessing autism with dsm-iv and dsm-5 criteria using the childhood autismrating scale (cars
),”
Salud mental
45
,
3
10
(
2022
).
12.
T.
Morita
,
M.
Asada
, and
E.
Naito
, “
Contribution of neuroimaging studies to understanding development of human cognitive brain functions
,
”Frontiers in human neuroscience
10
,
464
(
2016
).
13.
M. J.
Walsh
,
G. L.
Wallace
,
S. M.
Gallegos
, and
B. B.
Braden
, “
Brain-based sex differences in autism spectrum disorder across the lifespan: A systematic review of structural mri, fmri, and dti findings
,”
NeuroImage: Clinical
31
,
102719
(
2021
).
14.
K.-m.
An
,
T.
Ikeda
,
Y.
Yoshimura
,
C.
Hasegawa
,
D. N.
Saito
,
H.
Kumazaki
,
T.
Hirosawa
,
Y.
Minabe
, and
M.
Kikuchi
, “
Altered gamma oscillations during motor control in children with autism spectrum disorder
,”
Journal of Neuroscience
38
,
7878
7886
(
2018
).
15.
A.
Di Martino
,
D.
O’connor
,
B.
Chen
,
K.
Alaerts
,
J. S.
Anderson
,
M.
Assaf
,
J. H.
Balsters
,
L.
Baxter
,
A.
Beggiato
,
S.
Bernaerts
, et al, “
Enhancing studies of the connectome in autism using the autism brain imaging data exchange ii
,”
Scientific data
4
,
1
15
(
2017
).
16.
J.
Zhang
,
F.
Feng
,
T.
Han
,
X.
Gong
, and
F.
Duan
, “
Detection of autism spectrum disorder using fmri functional connectivity with featureselection and deep learning
,”
Cognitive Computation
,
1
12
(
2022
).
17.
H.
Sewani
and
R.
Kashef
, “
An autoencoder-based deep learning classifier for efficient diagnosis of autism
,”
Children
7
,
182
(
2020
).
18.
A. S.
Heinsfeld
,
A. R.
Franco
,
R. C.
Craddock
,
A.
Buchweitz
, and
F.
Meneguzzi
, “
Identification of autism spectrum disorder using deeplearning and the abide dataset
,”
NeuroImage: Clinical
17
,
16
23
(
2018
).
19.
X.
Li
,
Y.
Gu
,
N.
Dvornek
,
L. H.
Staib
,
P.
Ventola
, and
J. S.
Duncan
, “
Multi-site fmri analysis using privacy-preserving federated learning anddomain adaptation: Abide results
,”
Medical Image Analysis
65
,
101765
(
2020
).
20.
J. A.
Nielsen
,
B. A.
Zielinski
,
P. T.
Fletcher
,
A. L.
Alexander
,
N.
Lange
,
E. D.
Bigler
,
J. E.
Lainhart
, and
J. S.
Anderson
, “
Multisite functionalconnectivity mri classification of autism: Abide results
,”
Frontiers in human neuroscience
7
,
599
(
2013
).
21.
M.
Khosla
,
K.
Jamison
,
A.
Kuceyeski
, and
M. R.
Sabuncu
, “3d convolutional neural networks for classification of functional connectomes,”in
Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support
(
Springer
,
2018
) pp.
137
145
.
22.
F.
Ke
,
S.
Choi
,
Y. H.
Kang
,
K.-A.
Cheon
, and
S. W.
Lee
, “
Exploring the structural and strategic bases of autism spectrum disorders with deeplearning
,”
Ieee Access
8
,
153341
153352
(
2020
).
23.
X.
Yang
,
P. T.
Schrader
, and
N.
Zhang
, “
A deep neural network study of the abide repository on autism spectrum classification
,”
InternationalJournal of Advanced Computer Science and Applications
11
(
2020
).
24.
M. A.
Bayram
,
Ö.
˙Ilyas
, and
F.
Temurtaş
, “
Deep learning methods for autism spectrum disorder diagnosis based on fmri images
,”
Sakarya University Journal of Computer and Information Sciences
4
,
142
155
(
2021
).
25.
T.
Eslami
,
V.
Mirjalili
,
A.
Fong
,
A. R.
Laird
, and
F.
Saeed
, “
Asd-diagnet: a hybrid learning approach for detection of autism spectrum disorderusing fmri data
,”
Frontiers in neuroinformatics
13
,
70
(
2019
).
26.
R.
Tejwani
,
A.
Liska
,
H.
You
,
J.
Reinen
, and
P.
Das
, “
Autism classification using brain functional connectivity dynamics and machine learning
,” arXiv preprint arXiv:1712.08041 (
2017
).
27.
H.
Sharif
and
R. A.
Khan
, “
A novel machine learning based framework for detection of autism spectrum disorder (asd
),”
Applied ArtificialIntelligence
36
,
2004655
(
2022
).
28.
M.
Plitt
,
K. A.
Barnes
, and
A.
Martin
, “
Functional connectivity classification of autism identifies highly predictive brain features but fallsshort of biomarker standards
,”
NeuroImage: Clinical
7
,
359
366
(
2015
).
29.
S.
Saponaro
,
A.
Giuliano
,
R.
Bellotti
,
A.
Lombardi
,
S.
Tangaro
,
P.
Oliva
,
S.
Calderoni
, and
A.
Retico
, “
Multi-site harmonization of mridata uncovers machine-learning discrimination capability in barely separable populations: an example from the abide dataset
,”
NeuroImage: Clinical
,
103082
(
2022
).
30.
I. D.
Rodrigues
,
E. A.
de Carvalho
,
C. P.
Santana
, and
G. S.
Bastos
, “
Machine learning and rs-fmri to identify potential brain regions associatedwith autism severity
,”
Algorithms
15
,
195
(
2022
).
31.
C. J.
Mellema
,
K. P.
Nguyen
,
A.
Treacher
, and
A.
Montillo
, “
Reproducible neuroimaging features for diagnosis of autism spectrum disorderwith machine learning
,”
Scientific reports
12
,
1
13
(
2022
).
32.
I.
Bilgen
,
G.
Guvercin
, and
I.
Rekik
, “
Machine learning methods for brain network classification: application to autism diagnosis using cortical morphological networks
,”
Journal of neuroscience methods
343
,
108799
(
2020
).
33.
S.
Mostafa
,
L.
Tang
, and
F.-X.
Wu
, “
Diagnosis of autism spectrum disorder based on eigenvalues of brain networks
,”
Ieee Access
7
,
128474
128486
(
2019
).
34.
N.
Yahata
,
J.
Morimoto
,
R.
Hashimoto
,
G.
Lisi
,
K.
Shibata
,
Y.
Kawakubo
,
H.
Kuwabara
,
M.
Kuroda
,
T.
Yamada
,
F.
Megumi
, et al, “
A small number of abnormal brain connections predicts adult autism spectrum disorder
,”
Nature communications
7
,
1
12
(
2016
).
35.
S. R.
Dutta
,
M.
Roy
,
S.
Datta
, and
R.
Datta
, “
Iot in autism detection in its early stages
,” in
Internet of Things: Enabling Technologies, Security and Social Implications
(
Springer
,
2021
) pp.
47
58
.
36.
V.
Khullar
,
H. P.
Singh
,
M.
Bala
, et al, “
Deep neural network-based handheld diagnosis system for autism spectrum disorder
,”
Neurology India
69
,
66
(
2021
).
37.
S. K.
Pani
and
M.
Pandey
,
Internet of Things: Enabling Technologies, Security and Social Implications
(
Springer
,
2021
).
38.
M.
Alsuliman
and
H. H.
Al-Baity
, “
Efficient diagnosis of autism with optimized machine learning models: An experimental analysis on geneticand personal characteristic datasets
,”
Applied Sciences
12
,
3812
(
2022
).
39.
H. S.
Nogay
and
H.
Adeli
, “
Machine learning (ml) for the diagnosis of autism spectrum disorder (asd) using brain imaging
,”
Reviews in theNeurosciences
31
,
825
841
(
2020
).
40.
A.
Frigaux
,
R.
Evrard
, and
J.
Lighezzolo-Alnot
, “
Adi-r and ados and the differential diagnosis of autism spectrum disorders: Interests, limitsand openings
,”
L’encephale
45
,
441
448
(
2019
).
41.
J. A.
Reaven
,
S. L.
Hepburn
, and
R. G.
Ross
, “
Use of the ados and adi-r in children with psychosis: Importance of clinical judgment
,”
Clinicalchild psychology and psychiatry
13
,
81
94
(
2008
).
42.
O.
Dekhil
,
H.
Hajjdiab
,
A.
Shalaby
,
M. T.
Ali
,
B.
Ayinde
,
A.
Switala
,
A.
Elshamekh
,
M.
Ghazal
,
R.
Keynton
,
G.
Barnes
, et al, “
Using resting state functional mri to build a personalized autism diagnosis system
,”
PloS one
13
,
e0206351
(
2018
).
43.
Q.
Ke
,
J.
Zhang
,
W.
Wei
,
R.
Damaševicius
, and
M.
Woźniak
, “
Adaptive independent subspace analysis of brain magnetic resonance imaginǧ data
,”
Ieee Access
7
,
12252
12261
(
2019
).
44.
M.
Khodatars
,
A.
Shoeibi
,
D.
Sadeghi
,
N.
Ghaasemi
,
M.
Jafari
,
P.
Moridian
,
A.
Khadem
,
R.
Alizadehsani
,
A.
Zare
,
Y.
Kong
, et al, “
Deep learning for neuroimaging-based diagnosis and rehabilitation of autism spectrum disorder: a review
,”
Computers in Biology and Medicine
139
,
104949
(
2021
).
This content is only available via PDF.
You do not currently have access to this content.