Piggery wastewater typically contains high levels of ammonium, and discharge of the wastewater into the environment without adequate treatment could cause algal blooms and negatively impact the ecosystem. The integration of anaerobic ammonium oxidation (anammox) and partial denitrification (PD) has been proposed as an alternative method to remove ammonium. Therefore, enrichment cultures of anammox bacteria and partial denitrifying bacteria (PDB) are desired to attain efficient and stable ammonium removal. In this study, the activity induction of anammox bacteria and PDB were investigated in separate lab-scale batch cultures using pig manure effluents as the inoculum and synthetic wastewater as the substrate. The synthetic wastewater used for the activity induction of anammox bacteria contained NO2and NH4+ as the main substrates, and the variation in the molar ratios of NO2/ NH4+ was monitored and analyzed for their correlations with the anammox activity. The synthetic wastewater used for the activity induction of PDB contained acetate, NO3-, and NH4+ as the main substrates, and the variations in the molar ratios of C/N were monitored and analyzed for their correlations with the PDB activity. For the experiments on the anammox, the highest specific anammox activity and nitrogen removal rate were estimated to be 14.97 mg/g volatile suspended solids (VSS) d and 19.58 mg/L d, respectively, at a NO2/ NH4+ molar ratio of 1.57. However, the anammox activity was inhibited when the NO2/ NH4+ molar ratio reached 2.15. For the experiments on the PD, the COD had decreased from day 0 to day 4, causing the variations of the COD to NO3-N (C/N) through the culture period; i.e., 3.05, 1.70, 1.09, 0.60, and 0.66 on day 0, 1, 2, 3, and 4, respectively, whereas in theory, 1.14 g COD is required to denitrify 1 g of NO3-N (C/N=2) to NO2-N. The specific rates of nitrate consumption of 3.32 mg/g VSS d and nitrite production of 10.06 mg/g VSS d, the nitrogen removal efficiency of 94.69%, and the nitrate reduction efficiency of 51.20% were achieved at a C/N ratio of 0.66. The results demonstrated that the ratio of NO2/ NH4+ was a crucial parameter that strongly influenced the anammox activity, whereas the C/N ratios had relatively small effects on the PD activity.

1.
J.
Li
,
J.
Li
,
Y.
Peng
,
S.
Wang
,
L.
Zhang
,
S.
Yang
and
S.
Li
,
Bioresour. Technol.
300
,
122655
(
2020
).
2.
A.
Ziembinska-Buczynska
,
A.
Banach-Wisniewska
,
M.
Tomaszewski
,
I.
Poprawa
,
S.
Student
and
G.
Cema
,
Int. J. Sci. Environ. Technol.
16
,
4215
4222
(
2019
).
3.
S.
Shukla
,
A.
Rajta
,
H.
Setia
and
R.
Bhatia
,
World J. Microbiol. Biotechnol.
36
, (
2020
).
4.
K.
Ismail
,
M.S.
thesis
,
Masdar Institute of Science and Technology
,
2017
.
5.
S.
Magdum
and
V.
Kalyanraman
,
Res. J. Chem. Environ.
21
,
43
53
(
2017
).
6.
M.
Strous
,
J. J.
Heijnen
,
J. G.
Kuenen
and
M. S. M.
Jetten
,
Appl. Microbiol. Biotechnol.
50
,
589
596
(
1998
).
7.
Y.
Miao
,
L.
Zhang
,
Y.
Yang
,
Y.
Peng
,
B.
Li
,
S.
Wang
and
Q.
Zhang
,
Bioresour. Technol.
218
,
771
779
(
2016
).
8.
A.
Viancelli
,
A.
Kunz
,
P.A.
Esteves
,
F.V.
Bauermann
,
K.
Furukawa
,
T.
Fujii
,
R.V.
Antônio
and
M.
Vanotti
,
Braz. Arch. Biol. Technol.
54
,
1035
(
2011
).
9.
Z.
Pan
,
R.
Dai
,
J.
Liao
,
J. G.
Lin
,
Y.
Hong
and
J.
Ling
,
Int. Biodeterior. Biodegradation
154
,
105058
(
2020
).
10.
A.
Monballiu
,
E.
Desmidt
,
K.
Ghyselbrecht
,
H.
De Clippeleir
,
S. W. H.
Van Hulle
,
W.
Verstraete
and
B.
Meesschaert
,
Sep. Purif. Technol.
104
,
130
137
(
2013
).
11.
U.
Daalkhaijav
and
M.
Nemati
,
Environ. Technol.
35
,
523
531
(
2014
).
12.
S.
Cao
,
B.
Li
,
R.
Du
,
N.
Ren
, and
Y.
Peng
,
Water Res.
90
,
309
316
(
2016
).
13.
APHA
,
Standard methods for the examination of water and wastewater
(
XXX
,
Washington, DC, USA
21
,
2005
).
14.
M. J.
Fishman
,
Methods of analysis by the US Geological Survey National Water Quality Laboratory: Determination of inorganic and organic constituents in water and fluvial sediments
(
U.S Department of the Interior, U.S Geological Survey
,
1993
).
15.
E. J.
Arar
,
J. Z.
Zhang
,
P. B.
Ortner
and
C. J.
Fischer
,
Method 353.4 Determination of Nitrate and Nitrite in Estuarine and Coastal Waters by Gas Segmented Continuous Flow Colorimetric Analysis
(
U.S Environmental Protection Agency
,
Washington, DC
,
1997
), pp. X-Y.
16.
N.
Kishimoto
and
M.
Okumura
,
J. Water Environ. Technol.
16
,
221
232
(
2018
).
17.
A. A.
van de Graaf
,
P.
de Bruijn
,
L. A.
Robertson
,
M. S. M.
Jetten
and
J. G.
Kuenen
,
Microbiology
143
,
2415
2421
(
1997
).
18.
M.
Laureni
,
D. G.
Weissbrodt
,
I.
Szivák
,
O.
Robin
,
J. L.
Nielsen
,
E.
Morgenroth
and
A.
Joss
,
Water Res.
80
,
325
336
(
2015
).
19.
W.
Sun
,
Q.
Banihani
,
R.
Sierra-Alvarez
and
J. A.
Field
,
Chemosphere
84
,
1262
1269
(
2011
).
20.
S.
Bagchi
,
R.
Biswas
and
T.
Nandy
,
J. Ind. Microbiol. Biotechnol.
37
,
943
952
(
2010
).
21.
Y. C.
Yu
,
Y.
Tao
and
D. W.
Gao
,
RSC Adv.
4
,
54798
54804
(
2014
).
22.
Y.
Tao
,
D. W.
Gao
,
Y.
Fu
,
W. M.
Wu
and
N. Q.
Ren
,
Bioresour. Technol.
104
,
73
80
(
2012
).
23.
Q.
Wang
,
K.
Song
,
X.
Hao
,
J.
Wei
,
M.
Pijuan
,
M. C. M.
van Loosdrecht
and
H.
Zhao
,
Chemosphere
201
,
25
31
(
2018
).
24.
A.
Monti
,
W.
Zegada-Lizarazu
,
F.
Zanetti
and
M.
Casler
, in
Adv. Agron
, edited by
D. L.
Sparks
(
Academic Press
,
2019
), p.
87
119
.
25.
X.
Juan-Díaz
,
L.
Olmo
,
J.
Pérez
and
J.
Carrera
,
Chem. Eng. J.
431
(
2022
).
26.
S.
Cao
,
R.
Du
,
B.
Li
,
S.
Wang
,
N.
Ren
and
Y.
Peng
,
Chem. Eng. J.
326
,
1186
1196
(
2017
).
27.
R.
Du
,
S.
Cao
,
S.
Wang
,
M.
Niu
and
Y.
Peng
,
Bioresour. Technol.
219
,
420
429
(
2016
).
28.
S. W.
How
,
C. X.
Ting
,
J. Y.
Yap
,
C. Y.
Kwang
,
C. K.
Tan
,
W.
Yoochatchaval
,
K.
Syutsubo
and
A. S. M.
Chua
,
Sustain. Environ. Res.
31
, (
2021
).
29.
Z.
Peng
,
T.
Lou
,
K.
Jiang
,
N.
Niu
,
J.
Wang
and
A.
Liu
,
Bioprocess Biosyst. Eng.
44
,
2051
2059
(
2021
).
This content is only available via PDF.
You do not currently have access to this content.