The numerical study presents the effect of heat generation and chemical reaction on the problem of magnetohydrodynamics mixed convective flow of power-law nanofluid using Buongiorno’s model. Adiabatic non-conducting solid square block is located at the center of the cavity and both vertical walls are moving with uniform velocity. The governing dimensional equations in vector form are transformed into non-dimensional form. Then, the dimensionless equations are solved numerically by finite element method (FEM) using automated solution technique which is FEniCS. The effects of different parameters such as Richardson number, power-law index, magnetic field, heat generation/absorption, chemical reaction and size of square block on velocity, temperature, and concentration profiles are performed and discussed in this paper. It is found that rising both Richardson number and power-law index lead to increase the velocity and temperature profiles (right side of cavity). Besides, rising both magnetic parameter and size of square block lead to decrease the velocity and temperature profiles (right side of cavity). Adding the heat generation/absorption parameter has increased the temperature profile. In addition, increasing chemical reaction parameter has reduced the concentration profile.

1.
K.
Torrance
,
R.
Davis
,
K.
Eike
,
P.
Gill
,
D.
Gutman
,
A.
Hsui
,
S.
Lyons
, and
H.
Zien
, “
Cavity flows driven by buoyancy and shear
”,
Journal of Fluid Mechanics
51
(
2
),
221
23
(
1972
).
2.
R.
Iwatsu
,
J. M.
Hyun
, and
K.
Kuwahara
, “
Mixed convection in a driven cavity with a stable vertical temperature gradient
”,
International Journal of Heat and Mass Transfer
36
(
6
),
1601
1608
(
1993
).
3.
N.
Biswas
,
N. K.
Manna
, and
P. S.
Mahapatra
, “
Enhanced thermal energy transport using adiabatic block inside lid-driven cavity
”,
International Journal of Heat and Mass Transfer
100
,
407
427
(
2016
).
4.
A.
Ouahouah
,
S.
Kherroubi
,
A.
Bourada
,
N.
Labsi
, and
Y. K.
Benkahla
, “
Mixed convection flow and heat transfer in a double lid-driven cavity containing a heated square block in the center
”.
In MATEC Web of Conferences
330
,
01010
(
2020
).
5.
A. K.
Nayak
,
A.
Haque
, and
A.
Banerjee
, “
Thermosolutal mixed convection of a shear thinning fluid due to partially active mixed zones within a lid-driven cavity
”,
International Journal of Heat and Mass Transfer
106
,
686
707
(
2017
).
6.
K. M.
Gangawane
, “
Computational analysis of mixed convection heat transfer characteristics in lid-driven cavity containing triangular block with constant heat flux: Effect of Prandtl and Grashof numbers
”,
International Journal of Heat and Mass Transfer
105
,
34
57
(
2017
).
7.
K. V.
Wong
and
O
De Leon
, “
Applications of nanofluids: current and future
”,
Nanotechnology and Energy
,
105
132
(
2017
).
8.
R. K.
Tiwari
and
M. K.
Das
, “
Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids
”,
International Journal of Heat and Mass Transfer
50
,
2002
2018
(
2007
).
9.
J.
Buongiorno
, “
Convective transport in nanofluids
”,
Journal of Heat Transfer
128
(
3
),
240
250
(
2006
).
10.
K.
Mehmood
,
S.
Hussain
, and
M.
Sagheer
, “
Mixed convection in alumina-water nanofluid filled lid-driven square cavity with an isothermally heated square blockage inside with magnetic field effect: introduction
”,
International Journal of Heat and Mass Transfer
109
,
397
409
(
2017
).
11.
D. S.
Bondarenko
,
M. A.
Sheremet
,
H. F.
Oztop
, and
N.
Abu-Hamdeh
, “
Mixed convection heat transfer of a nanofluid in a lid-driven enclosure with two adherent porous blocks
”,
Journal of Thermal Analysis and Calorimetry
135
(
2
),
1095
1105
(
2019
).
12.
A.
Siddiqua
, and
S.
Parvin
, “
Heatline analysis for mixed convection flow of nanofluid in a two sided lid-driven cavity with a heat generating block: Effect of Reynolds number
”,
In AIP Conference Proceedings
2121
(
1
),
070010
(
2019
).
13.
A. I.
Alsabery
,
M. A.
Ismael
,
A. J.
Chamkha
, and
I.
Hashim
, “
Mixed convection of Al2O3-water nanofluid in a double lid-driven square cavity with a solid inner insert using Buongiorno’s two-phase model
”,
International Journal of Heat and Mass Transfer
11
9
,
939
961
(
2018
).
14.
A. I.
Alsabery
,
M. A.
Ismael
,
A. J.
Chamkha
, and
I.
Hashim
, “
Effects of two-phase nanofluid model on MHD mixed convection in a lid-driven cavity in the presence of conductive inner block and corner heater
”,
Journal of Thermal Analysis and Calorimetry
135
(
1
),
729
750
(
2019
).
15.
G. H. R.
Kefayati
, “
Mixed convection of non-Newtonian nanofluid in an enclosure using Buongiorno’s mathematical model
”,
International Journal of Heat and Mass Transfer
108
,
1481
1500
(
2017
).
16.
G. H. R.
Kefayati
, “
Simulation of natural convection and entropy generation of non-Newtonian nanofluid in a porous cavity using Buongiorno’s mathematical model
”,
International Journal of Heat and Mass Transfer
112
,
709
744
(
2017
).
17.
G. H. R.
Kefayati
, and
H.
Tang
, “
Simulation of natural convection and entropy generation of MHD non-Newtonian nanofluid in a cavity using Buongiorno’s mathematical model
”,
International Journal of Hydrogen Energy
42
(
27
),
17284
17327
(
2017
).
18.
A.
Logg
,
K. A.
Mardal
, and
G. N.
Wells
, “
Automated Solution of Differential Equations by the Finite Element Method
.”
Springer Science & Business Media
(
2012
).
19.
H. P.
Langtangen
and
A.
Logg
, “
Solving PDEs in Python: The FEniCS Tutorial I
”,
Springer Nature
(
2016
).
20.
A. V.
Kuznetsov
and
D. A.
Nield
, “
Natural convective boundary-layer flow of a nanofluid past a vertical plate
”,
International Journal of Thermal Sciences
49
(
2
),
243
247
(
2010
).
21.
J. P.
Denier
and
P. P.
Dabrowski
, “
On the boundary–layer equations for power–law fluids
”,
Proceedings of the Royal Society of London. Series A: Mathematical Physical and Engineering Sciences
460
(
2051
),
3143
3158
(
2004
).
This content is only available via PDF.
You do not currently have access to this content.