This paper discusses synthesis and characterization of high-κ dielectric zirconium oxide (ZrO2) nanoparticles by using thermal treatment method. Zirconium tetrachloride (ZrCl4) and water is used to synthesize zirconium oxide (ZrO2). A thin film of ZrO2 was deposited on an ITO coated glass by using electrochemical deposition (ECD) technique. The thickness of the deposited layer is measured and found to be ∼10 nm. The synthesized powder of ZrO2 was investigated and characterized to analyse the structural and optical properties by using different imaging techniques such as transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). At calcination temperature of 600℃, the tetragonal phase of ZrO2 from XRD spectra is revealed. The crystalline phase of ZrO2 is confirmed from FTIR spectra. The ZrO2 film deposited on ITO coated glass was imaged by Scanning electron microscopy (SEM) technique. The elements, zirconium and oxygen present in the sample is confirmed by TEM and SEM analysis. and shows smooth surface morphologies. SEM analysis also confirms the microstructure of the nanoparticles. TEM images show the average size of ZrO2 particles is less than 52 nm. The ZrO2 film was characterised by cyclic voltammetry (CV) test in phosphate buffer solution (PBS) of 0.1 M KOH at 100 mV/s scan rate. The interfacial properties of the deposited film were analyzed by Electrochemical impedance spectroscopy (EIS).

1.
N.
Yang
,
X.
Chen
,
T.
Ren
,
P.
Zhang
, and
D.
Yang
, “
Carbon nanotube based biosensors
,”
Sensors and Actuators B: Chemical
,
207
,
2015
pp.
690715
.
2.
N.P.
Maity
,
R.
Maity
,
R. K.
Thapa
, and
S.
Baishya
, “
Study of interface charge densities for ZrO2 and HfO2 based metal-oxide-semiconductor devices
,”
Advances in Materials Science and Engineering
,
2014
.
3.
J. C.
Dutta
,
H. R.
Thakur
, and
G.
Keshwani
, “
High-Performance Dual-Gate Carbon Nanotube Ion-Sensitive Field Effect Transistor with High-κ Top Gate and Low κ Bottom Gate Dielectrics
,”.
IEEE Sensors Journal
,
19
(
14
),
2019
pp.
5692
5699
.
4.
T.
Ramakrishnappa
,
L.R.
Yadav
,
J.R.
Pereira
,
R.
Venkatesh
, and
G.
Nagaraju
, “
Resistivity of zirconium oxide nanoparticles synthesized by solution combustion method using rubber latex fuel
,”
Materials Today: Proceedings
,
49
,
2022
pp.
714
719
.
5.
H. J.
Kim
,
Y. G.
Kang
,
H. G.
Park
,
K. M.
Lee
,
S.
Yang
,
H. Y.
Jung
, and
D. S.
Seo
, “
Effects of the dispersion of zirconium dioxide nanoparticles on high performance electro-optic properties in liquid crystal devices
,”
Liquid Crystals
,
38
(
7
),
2011
pp.
871
875
.
6.
S.
Sagadevan
,
J.
Podder
, and
I.
Das
, “
Hydrothermal synthesis of zirconium oxide nanoparticles and its characterization
,”
Journal of Materials Science: Materials in Electronics
,
27
(
6
),
2016
pp.
5622
5627
.
7.
A. S.
Keiteb
,
E.
Saion
,
A.
Zakaria
, and
N.
Soltani
, “
Structural and optical properties of zirconia nanoparticles by thermal treatment synthesis
,”
Journal of nanomaterials
,
2016
.
8.
L.
Kumari
,
W. Z.
Li
,
J. M.
Xu
,
R. M.
Leblanc
,
D. Z.
Wang
,
Y.
Li
,
H.
Guo
, and
J.
Zhang
, “
Controlled hydrothermal synthesis of zirconium oxide nanostructures and their optical properties
,”
Crystal Growth and Design
,
9
(
9
),
2009
pp.
3874
3880
.
9.
K.
Anandan
,
K.
Rajesh
,
K.
Gayathri
, S,
V.
Sharma
,
S. M.
Hussain
, and
V.
Rajendran
, “
Effects of rare earth, transition and post transition metal ions on structural and optical properties and photocatalytic activities of zirconia (ZrO2) nanoparticles synthesized via the facile precipitation process
,”
Physica E: Low-dimensional Systems and Nanostructures
,
124
,
2020
p.
114342
.
10.
M. A.
Gondal
,
T. A
Fasasi
,
U.
Baig
, and
A.
Mekki
, “
Effects of oxidizing media on the composition, morphology and optical properties of colloidal zirconium oxide nanoparticles synthesized via pulsed laser ablation in liquid technique
,
Journal of Nanoscience and Nanotechnology
,
18
(
6
),
2018
pp.
4030
4039
.
11.
G. T.
Imanova
,
T. N.
Agayev
, and
S. H.
Jabarov
, “
Investigation of structural and optical properties of zirconia dioxide nanoparticles by radiation and thermal methods
,”
Modern Physics Letters B
,
35
(
02
),
2021
p.
2150050
.
12.
N. C.
Horti
,
M. D.
Kamatagi
,
S. K.
Nataraj
,
M. N.
Wari
, and
S. R.
Inamdar
, “
Structural and optical properties of zirconium oxide (ZrO2) nanoparticles: effect of calcination temperature
,
Nano Express
,
1
(
1
),
2020
p.
010022
.
13.
I. R.
Agool
,
K. J.
Kadhim
, and
A.
Hashim
, “
Fabrication of new nanocomposites:(PVA-PEG-PVP) blend-zirconium oxide nanoparticles) for humidity sensors
,”
International Journal of Plastics Technology
,
21
(
2
),
2017
pp.
397
403
.
14.
P.
Goyal
,
A.
Bhardwaj
,
B. K.
Mehta
, and
D.
Mehta
, “
Research article green synthesis of zirconium oxide nanoparticles (ZrO2NPs) using Helianthus annuus seed and their antimicrobial effects
,”
Journal of the Indian Chemical Society
,
98
(
8
),
2021
p.
100089
.
15.
K. R.
Kumar
,
T.
Pridhar
, and
V. S.
Balaji
, “
Mechanical properties and characterization of zirconium oxide (ZrO2) and coconut shell ash (CSA) reinforced aluminium (Al 6082) matrix hybrid composite
,”
Journal of Alloys and Compounds
,
765
,
2018
pp.
171
179
.
16.
A. B.
Colak
, “
Experimental study for thermal conductivity of water-based zirconium oxide nanofluid: developing optimal artificial neural network and proposing new correlation
,
International Journal of Energy Research
,
45
(
2
),
2021
pp.
2912
2930
.
17.
G.
Keshwani
,
H. R.
Thakur
, and
J. C.
Dutta
, “Characterization of thin zirconia films deposited by ECD on ITO coated glass for biosensing applications,
In 6th International Conference on Signal Processing and Integrated Networks (SPIN)
,
2019
(pp.
776
779
).
IEEE
18.
J. C.
Dutta
, and
H. R.
Thakur
, “
Sensitivity determination of CNT-based ISFETs for different high-dielectric materials
.
IEEE Sensors Letters
,
1
(
2
),
2017
pp.
1
4
.
19.
H. R.
Thakur
, and
J. C.
Dutta
, “
Modeling of carbon nanotube ISFETs with high-κ gate dielectrics for biosensing applications
,”
International Journal of Numerical Modelling: Electronic Networks, Devices and Fields
,
32
(
6
),
2019
p.
e2654
.
20.
M.
Aghazadeh
, “
Cathodic electrodeposition of ZrO2: impact of current density on the crystal structure, composition and morphology
,”
Journal of the Electrochemical Society
,
159
(
3
),
2011
p.
E53
.
21.
D. P.
Thompson
,
A. M
Dickins
, and
J. S
Thorp
, “
The dielectric properties of zirconia
,”
Journal of materials science
,
27
(
8
),
1992
pp.
2267
2271
.
22.
R. A.
Sigwadi
,
S. E.
Mavundla
,
N.
Moloto
,
T.
Mokrani
, “
Synthesis of zirconia-based solid acid nanoparticles for fuel cell application
.
Journal of Energy in Southern Africa
,
27
(
2
),
2016
pp.
60
67
.
23.
X.
Fan
,
P.
Ohlckers
, and
X
Chen
, “
Tunable synthesis of hollow Co3O4 nanoboxes and their application in supercapacitors
,”
Applied Sciences
,
10
(
4
),
2020
p.
1208
.
24.
G. S.
Kaliaraj
,
V.
Vishwakarma
,
K.
Alagarsamy
, and
A. K.
Kirubaharan
, “
Biological and corrosion behavior of m-ZrO2 and t-ZrO2 coated 316L SS for potential biomedical applications
,”
Ceramics International
,
44
(
12
),
2018
pp.
14940
14946
.
25.
H. S.
Magar
,
R. Y.
Hassan
, and
A.
Mulchandani
, “
Electrochemical impedance spectroscopy (EIS): Principles, construction, and biosensing applications
,”
Sensors
,
21
(
19
),
2021
p.
6578
.
26.
H. H
Hernández
,
A. M. R.
Reynoso
,
J. C. T
González
,
C. O. G
Morán
,
J. G. M.
Hernández
,
A. M
Ruiz
,
J. M.
Hernández
, and
R. O.
Cruz
, “
Electrochemical impedance spectroscopy (EIS): A review study of basic aspects of the corrosion mechanism applied to steels
,”
Electrochemical Impedance Spectroscopy
,
2020
pp.
137
144
.
This content is only available via PDF.
You do not currently have access to this content.